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1

Introduction

Interest in deep learning (DL) is increasing every day. It has escaped from the
research laboratories and become a daily fact of life. The achievements and poten-
tial of DL are reported in the lay news and form the subject of discussion at dinner
tables, cafes, and pubs across the world. This is an astonishing change of fortune
considering the technology upon which it is founded was pronounced a research
dead end in 1969 (131) and largely abandoned.

The universe of DL is a veritable alphabet soup of bewildering acronyms. There
are artificial neural networks (ANN)s, RNNs, LSTMs, CNNs, Generative Adversar-
ial Networks (GAN)s, and more are introduced every day. The types and applica-
tions of DL are proliferating rapidly, and the acronyms grow in number with them.
As DL is successfully applied to new problem domains this trend will continue.
Since 2015 the number of artificial intelligence (AI) patents filed per annum has
been growing at a rate of 76.6% and shows no signs of slowing down (169). The
growth rate speaks to the increasing investment in DL and suggests that it is still
accelerating.

DL is based on ANN. Often only neural networks is written and the artificial is
implied. ANNs attempt to mathematically model biological assemblies of neurons.
The initial goal of research into ANNs was to realize AI in a computer. The motiva-
tion and means were to mimic the biological mechanisms of cognitive processes in
animal brains. This led to the idea of modeling the networks of neurons in brains.
If biological neural networks could be modeled accurately with mathematics, then
computers could be programmed with the models. Computers would then be able
to perform tasks that were previously thought only possible by humans; the dream
of the electronic brain was born (151). Two problem domains were of particular
interest: natural language processing (NLP), and image recognition. These were
areas where brains were thought to be the only viable instrument; today, these
applications are only the tip of the iceberg.

Demystifying Deep Learning: An Introduction to the Mathematics of Neural Networks,
First Edition. Douglas J. Santry.
© 2024 The Institute of Electrical and Electronics
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2 1 Introduction

In the field of image recognition, DL has achieved spectacular results and, by
some metrics, is out-performing humans. Image recognition is the task of find-
ing and identifying objects in an image. DL has a better record than humans (13;
63) recognizing the ImageNet (32) test suite, an important database of millions of
photographs. Computer vision has become so reliable for some tasks that it is com-
mon for motor cars to offer features based on reliable computer vision, and in some
cases, cars can even drive themselves. In airports and shopping malls, we are con-
tinually monitored by CCTV, but often it is a computer, not a human, performing
the monitoring (39). Some CCTV monitors look for known thieves and automati-
cally alert the staff, or even the local police, when they are spotted in a shop (165).
This can lead to problems. When courts and the police do not understand how to
interpret the results of the software great injustices can follow.

One such example is that of Robert Julian-Borchak Williams (66). Mr. Williams’
case is a cautionary tale. AI image recognition software is not evidence and does
not claim to be. It is meant to point law enforcement in a promising direction of
investigation; it is a complement to investigation, not a substitute. But too often
the police assume the computer’s hint is a formal allegation and treat it as such.
Mr. Williams was accused of a crime by the police that he did not commit. The
police were acting on information from AI image recognition software, but the
police were convinced because they did not understand what the computer was
telling them. A computer suggested that the video of a shoplifter in a shop could
be Mr. Williams. As a result, a warrant was obtained on the basis of the computer’s
identification. All the “safeguards,” such as corroborating evidence, despite being
formal policy of the police department, were ignored, and Mr. Williams had a
nightmare visited upon him. He was arrested, processed, and charged with no
effort on the part of the police to confirm the computer’s suggestion. This sce-
nario has grown so frequent that there are real concerns with the police and the
courts using AI technology as an aid to their work. Subsequently, Amazon, IBM,
and Microsoft withdrew their facial recognition software from police use pending
federal regulation (59). DL, like any tool, must be used responsibly to provide the
greatest benefit and mitigate harm.

DL ANNs have also made tremendous progress in the field of NLP. Natural
language is how people communicate, such as English or Japanese. Computers
are just elaborate calculators, and they have no capacity for inference or context;
hence, people use programming languages to talk to computers. The current
state-of-the-art NLP is based on transformers (155) (see Section 9.4 for details).
Transformers have led to recent rapid progress in language models and NLP
tools since 2017. Moreover, progress in NLP systems is outstripping the test
suites. A popular language comprehension benchmark, the General Language
Understanding Benchmark (GLUE) (158), was quickly mastered by research
systems, leading to its replacement by SuperGLUE in the space of a year (159).
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SuperGlue will soon be upgraded. Another important benchmark, the Stanford
Question Answering Dataset 2.0 (SQUAD) (121) has also been mastered1 and is
anticipating an update to increase the challenge. The test suites are currently too
easy for modern NLP systems. This is impressive as the bar was not set low per se.
DL ANNs are, on average, outperforming humans in both test suites. Therefore,
it can be argued that the test suites are genuinely challenging.

Of particular note is OpenAI’s ChatGPT; it has dazzled the world (128). The
author recently had to change the questions for his university course assignments
because the students were using ChatGPT to produce complete answers. Because
ChatGPT can understand English, some students were cutting and pasting the
question, in plain English, into the ChatGPT prompt and doing the reverse with
the response. ChatGPT is able to produce Python code that is correct. The irony of
students using DL to cheat on AI course work was not lost on him.

A lot of the debate surrounding ChatGPT has centered on its abilities, what
it can and cannot do reliably, but to do so is to miss the point. The true import
of ChatGPT is not what it can do today. ChatGPT is not perfect, and its creators
never claimed it was far from it. The free version used by most of the world was
made available to aid in identifying and fixing problems. ChatGPT is a point in
a trend. The capabilities of ChatGPT, today, are not important. The real point is
the implication of what language models will be capable of in five to ten years.
The coming language models will clearly be extremely powerful. Businesses and
professions that think they are safe because ChatGPT is not perfect are taking ter-
rible risks. There is a misconception that it is low-skilled jobs that will experience
the most change, that the professions will remain untouched as they have been
for decades. This is a mistake. The real application of DL is not in low-skilled jobs.
Factories and manufacturing were already disrupted starting in the 1970s with the
introduction of automation. DL is going to make the professions more productive,
such as medicine and law. It is the high-skilled jobs that are going to experience
the most disruption. A study by OpenAI examining the potential of its language
models suggested that up to 80% of the US workforce would experience some
form of change resulting from language models (38). This may be a conservative
estimate.

Perhaps one of the most interesting advances of DL is the emergence of systems
that produce meaningful content. The systems mentioned so far either classify,
inflect (e.g. translate), or “comprehend” input data. Systems that produce material
instead of consuming it are known as generative. When produced with DL, they
are known as a Generative Artificial Neural Network (GANN). ChatGPT is an

1 The leaderboard shows 90% is now a common score: https://rajpurkar.github.io/SQuAD-
explorer. The human score is 89%.

https://rajpurkar.github.io/SQuAD-explorer
https://rajpurkar.github.io/SQuAD-explorer
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Figure 1.1 Examples of GAN-generated cats. The matrix on the left contains examples
from the training set. The matrix on the right are GAN-generated cats. The cats on the
right do not exist. They were generated by the GAN. Source: Karras et al. (81).

example of a generative language model. Images and videos can also be generated.
A GANN can draw an image this is very different from learning to recognize
an image. A powerful means of building GANNs is with GAN (50); again, very
much an alphabet soup. As an example, a GAN can be taught impressionist
painting by training it with pictures by the impressionist masters. The GAN will
then produce a novel painting very much in the genre of impressionism. The
quality of the images generated is remarkable. Figure 1.1 displays an example
of cats produced by a GAN (81). The GAN was trained to learn what cats look
like and produce examples. The object is to produce photorealistic synthetic
cats. Products such as Adobe Photoshop have included this facility for general
use by the public (90). In the sphere of video and audio, GANs are producing
the so-called “deep fake” videos that are of very high quality. Deep fakes are
becoming increasingly difficult for humans to detect. In the age of information
war and disinformation, the ramifications are serious. GANs, are performing
tasks at levels undreamt of a few decades ago, the quality can be striking, and even
troubling. As new applications are identified for GANs the resources dedicated
to improving them will continue to grow and produce ever more spectacular
results.
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1.1 AI/ML – Deep Learning?

It is all too common to see the acronym AI/ML, which stands for artificial intel-
ligence/machine learning, and worse to see the terms used interchangeably. AI,
as the name implies, is the study of simulating or creating intelligence, and even
defining intelligence. It is a field of study encompassing many areas including, but
not limited to, machine learning. AI researchers can also be biologists (histology
and neurology), psychologists, mathematicians, computer scientists, and philoso-
phers. What is intelligence? What are the criteria for certifying something as intel-
ligent? These are philosophical questions as much as technical challenges. How
can AI be defined without an understanding of “natural” intelligence? That is a
question that lies more in the biological realm than that of technology. Machine
Learning is a subfield of AI. DL and ANNs are a subfield of machine learning.

The polymath, Alan Turing, suggested what has come to be known as the Turing
Test2 in 1950 (153). He argued that if a machine could fool a human by convincing
the human that it is human too, then the computer is “intelligent.” He proposed
concealing a human and a computer and linking them over a teletype to a third
party, a human evaluator. If the human evaluator could not distinguish between
the human and the computer, then, effectively, the computer could be deemed “in-
telligent.” It is an extremely controversial assertion, but a useful one in 1950. It has
formed an invaluable basis for discussion ever since. An influential argument for-
warded in 1980 by the philosopher, John Searle, asserts that a machine can never
realize real intelligence in a digital computer. Searle argued that a machine that
could pass the Turing test was not necessarily intelligent. He proposed a thought
experiment called the Chinese Room (135). The Turing test was constrained to be
performed in Chinese, and it was accepted that a machine could be programmed
to pass the test. Searle argued that there is an important distinction between sim-
ulating Chinese and understanding Chinese. The latter is the true mark of intelli-
gence. He characterized the difference as “weak AI” and “strong AI”. A computer
executing a program of instructions is not thinking, and Searle argued that is all
a computer could ever do. There is a large body of literature, some of which pre-
dates Turing’s contribution and dates back to Leibniz (96; 98), debating the point.
OpenAI’s recent offering, ChatGPT, is a perfect example of this dichotomy. The lay
press speculates (128) on whether it is intelligent, but clearly it is an example of
“weak AI.” The product can pass the Turing test, but it is not intelligent.

To understand what machine learning is, one must place it in relation to AI. It
is a means of realizing some aspect of AI in a digital computer; it is a subfield of
AI. Tom Mitchell, who wrote a seminal text on machine learning (105), provides a

2 Alan Turing called it the “imitation game.”
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useful definition of machine learning: “A computer program is said to learn3 from
experience, E, with respect to some class of tasks, T, and performance measure, P,
if its performance at tasks in T, as measured by P, improves with experience E.”
[Page 2]. Despite first appearances, this really is a very concise definition. So while
it is clear that machine learning is related to AI, the reverse is not necessarily true.
DL and ANN are, in turn, specializations of machine learning. Thus, while DL is
a specialization of AI, not all AI topics are necessarily connected to DL.

The object of this book is to present a canonical mathematical basis for DL con-
cisely and directly with an emphasis on practical implementation, and as such, the
reference approach is consciously eschewed. It is not an attempt to cover every-
thing as it cannot. The field DL has advanced to the point where both its depth
and breadth call for a series of books. But a brief history of DL is clearly indicated.
DL evolved from ANNs, and so the history begins with them. The interested reader
is directed to (31) for a more thorough history and to (57; 127) for a stronger bio-
logical motivation.

1.2 A Brief History

ANNs are inspired by, and originally attempted to simulate, biological neural
networks. Naturally, research into biological neural networks predated ANNs.
During the nineteenth century, great strides were taken, and it was an inter-
disciplinary effort. As physicists began to explain electricity and scientists
placed chemistry on a firm scientific footing, the basis was created for a proper
understanding of the biological phenomena that depended on them. Advances in
grinding lenses combined with a better appreciation of the light condenser led to
a dramatic increase in the quality microscopes. The stage was set for histologists,
biologists, and anatomists to make progress in identifying and understanding
tissues and cell differentiation. Putting all those pieces together yielded new
breakthroughs in understanding the biology of living things in every sphere.

Alexander Bain and William James made independent seminal contributions
(8; 76). They postulated that physical action, the movement of muscles, was
directed and controlled by neurons in the brain and communicated with electrical
signals. Santiago Ramón y Cajal (167) and Sir Charles Sherrington (136) put
the study of neurology on a firm footing with their descriptions of neurons and
synapses; both would go on to win Nobel prizes for their contributions in 1906
and 1932, respectively.

By the 1940s, a firm understanding of biological neurons had been developed.
Computer science was nascent, but fundamental results were developed. In the

3 The word, learn, is in bold in Mitchell’s text. The author clearly wished to emphasize the
nature of the exercise.
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1930s, Alonzo Church had described his Lambda Calculus model of computation
(21), and his student, Alan Turing, had defined his Turing Machine4 (152), both
formal models of computation. The age of modern computation was dawning.
Warren McCulloch and Walter Pitts wrote a number of papers that proposed arti-
ficial neurons to simulate Turing machines (164). Their first paper was published
in 1943. They showed that artificial neurons could implement logic and arithmetic
functions. Their work hypothesized networks of artificial neurons cooperating to
implement higher-level logic. They did not implement or evaluate their ideas, but
researchers had now begun thinking about artificial neurons.

Daniel Hebb, an eminent psychologist, wrote a book in 1949 postulating a learn-
ing rule for artificial neurons (65). It is a supervised learning rule. While the rule
itself is numerically unstable, the rule contains many of the ingredients of modern
ANNs. Hebb’s neurons computed state based on the scaler product and weighted
the connections between the individual neurons. Connections between neurons
were reinforced based on use. While modern learning rules and network topolo-
gies are different, Hebb’s work was prescient. Many of the elements of modern
ANNs are recognizable such as a neuron’s state computation, response propaga-
tion, and a general network of weighted connections.

The next step to modern ANNs was Frank Rosenblatt’s perceptron (130). Rosen-
blatt published his first paper in 1958. Building on Hebb’s neuron, he proposed an
updated supervised learning rule called the perceptron rule. Rosenblatt was inter-
ested in computer vision. His first implementation was in software on an IBM 704
mainframe (it had 18 k of memory!). Perceptrons were eventually implemented in
hardware. The machine was a contemporary marvel fitted with an array of 20 × 20
cadmium sulfide photocells used to create a 400 pixel input image. The New York
Times reported it with the headline, “Electronic Brain Teaches Itself.” Hebb’s neu-
ron state was improved with the introduction of a bias, an innovation still very
important today. Perceptrons were capable of learning linear decision boundaries,
that is, the categories of classification had to be linearly separable.

The next milestone was a paper by Widrow and Hoff in 1960 that proposed a
new learning rule, the delta rule. It was more numerically stable than the percep-
tron learning rule. Their research system was called ADALINE (15) and used least
squares to train the network. Like Rosenblatt’s early work, ADALINE was imple-
mented in hardware with memristors. The follow-up system, MADALINE (163),
included multiple layers of perceptrons, another step toward modern ANNs. It
suffered from a similar limitation as Rosenblatt’s perceptrons in that it could only
address linearly separable problems; it was a composition of linear classifiers.

In 1969, Minksy and Papert published a book that set a pall on ANN
research (106). They demonstrated that ANNs, as they were understood at that

4 It was Church who coined the term, Turing Machine.
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point, suffer from an inherent limitation. It was argued that ANNs could never
solve “interesting” problems; but the assertion was based on the assumption
that ANNs could never practically handle nonlinear decision boundaries. They
famously used the example of the XOR logic gate. As the XOR truth table could
not be learnt by an ANN, and XOR is trivial concept when compared to image
recognition and other applications, they concluded that the latter applications
were not appropriate. As most interesting problems are nonlinear, including
vision and NLP, they concluded that the ANN was a research dead end. Their
book had the effect of chilling research in ANNs for many years as the AI com-
munity accepted their conclusion. It coincided with a general reassessment of the
practicality of AI research in general and the beginning of the first “AI Winter.”

The fundamental problem facing ANN researchers was how to train multiple
layers of an ANN to solve nonlinear problems. While there were multiple inde-
pendent developments, Rumelhart, Hinton, and Williams are generally credited
with the work that described the backpropagation of error algorithm in the context
of training ANNs (34). This was published in 1986. It is still the basis of train-
ing today. Backpropagation of error is the basis of the majority of modern ANN
training algorithms. Their method provided a means of training ANNs to learn
nonlinear problems reliably.

It was also in 1986 that Rina Dechter coined the term, “Deep Learning” (30).
The usage was not what is meant by DL today. She was describing a backtracking
algorithm for theorem proving with Prolog programs.

The confluence of two trends, the dissemination of the backpropagation algo-
rithm and the advent of widely available workstations, led to unprecedented exper-
imentation and advances in ANNs. By 1989, in a space of just 3 years, ANNs had
been successfully trained to recognize hand-written digits in the form of postal
codes from the United States Postal Service. This feat was achieved by a team led
by Yann Lecun at AT&T Labs (91). The work had all the recognizable features of
DL, but the term had not yet been applied to neural networks in that sense. The
system would evolve into LeNet-5, a classic DL model. The renewed interest in
ANN research has continued unbroken down to this day. In 2006, Hinton et al.
described a multi-layered belief network that was described as a “Deep Belief Net-
work,” (67). The usage arguably led to referring to deep neural networks as DL.
The introduction of AlexNet in 2012 demonstrated how to efficiently use GPUs
to train DL models (89). AlexNet set records in image recognition benchmarks.
Since AlexNet DL models have dominated most machine learning applications; it
has heralded the DL Age of machine learning.

We leave our abridged history here and conclude with a few thoughts. As
the computing power required to train ANNs grows ever cheaper, access to
the resources required for research becomes more widely available. The IBM
Supercomputer, ASCI White, cost US$110 million in 2001 and occupied a special
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purpose room. It had 8192 processors for a total of 123 billion transistors with a
peak performance of 12.3 TFLOPS.5 In 2023, an Apple Mac Studio costs US$4000,
contains 114 billion transistors, and offers peak performance of 20 TFLOPS. It sits
quietly and discreetly on a desk. In conjunction with improvements in hardware,
there is a change in the culture of disseminating results. The results of research
are proliferating in an ever more timely fashion.6 The papers themselves are also
recognizing that describing the algorithms is not the only point of interest. Papers
are including experimental methodology and setup more frequently, making
it easier to reproduce results. This is made possible by ever cheaper and more
powerful hardware. Clearly, the DL boom has just begun.

1.3 The Genesis of Models

A model is an attempt to mimic some phenomenon. It can take the form of a
sculpture, a painting or a mathematical explanation of observations of the nat-
ural world. People have been modeling the world since the dawn of civilization.
The models of interest in this book are quantitative mathematical models. People
build quantitative models to understand the world and use the models to make
predictions. With accurate predictions come the capacity to exploit and manipu-
late natural phenomena. Humans walked on the moon because accurate models
of gravity, among many other things, were possible. Building quantitative mod-
els requires many technologies. Writing, the invention of numbers and a means
of operating on them, arithmetic, and finally mathematics. In its simplest form, a
model is a mathematical function. In essence, building a model means developing
a mathematical function that makes accurate predictions; the scientific method
is an extraordinarily successful example of this. DL ANNs are forms of models,
but before we examine them let us examine how models have traditionally been
developed.

1.3.1 Rise of the Empirical Functions

People have been building models for millennia. The traditional means of doing so
is to write down a constrained set of equations and then solve them. For millennia,
the constraints have been in the form of natural laws or similar phenomena. The
laws are often discovered scientifically. Ibn al-Haytham and Galileo Galilei (45)
independently invented the scientific method, which when combined with the

5 TFLOP (teraflops), trillions of floating point operations per second.
6 For example, sites such as https://arxiv.org/list/cs.LG/recent offer researchers and the
community early peer review and uncopyrighted access to research. The time frames are
convenient for research, not journal deadlines.

https://arxiv.org/list/cs.LG/recent
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calculus (invented independently by Newton and Leibniz in 1660s), a century later
led to an explosion of understanding of the natural world. The scientist gathers
data, interprets it, and composes a law in the form of an equation that explains it.
For example, Newton’s law of gravity is

Force of Gravity =
Gm1m2

r2 , (1.1)

where G = 6.674 ⋅ 1011 m3 ⋅ kg−1s−2 in SI units, r is the distance between two
objects, and mi are the masses of the objects.

Using the equation for gravity, one can build models by writing an equation and
then solving it. The law of gravity acts as the constraint. Natural laws are discovered
by scientists collecting, analyzing, and interpreting the data to discern the relation-
ships between the variables, and the result is an interpretable model. Once natural
laws have been published, such as the conservation of mass, scientists, and engi-
neers can use them to build models of systems of interest. This is done for exciting
things like the equations of motion for rockets and dull things like designing the
plumbing for an apartment building; mathematical models are everywhere.

The process of building a model begins with writing down a set of constraints in
the form of a system of differential equations and then solving them. To illustrate,
consider the trivial problem of producing a model that computes the time to fall
for an object from a height, h, near the surface of the Earth. The object’s motion is
constrained by gravity. The classical means of proceeding is to use Newton’s laws
and writing down a constraint. Acceleration near the surface of the Earth can be
approximated with the constant, g (9.80665 m/s2). Employing Newton’s notation
for derivatives, we obtain the following equation of motion (acceleration in this
case) based on the physical constraint:

ẍ = g. (1.2)

The equation can be integrated to obtain the velocity (ignoring friction),

ẋ = ∫ g ⋅ dt = gt, (1.3)

which in turn can be integrated to produce the desired model, t = f (h),

h ≡ x =
g
2

t2 ⟹ t =

√
2h
g

= f (h). (1.4)

This yields an analytical solution obtained from the constraint, which was
obtained from a natural law. Of course this is a very trivial example, and often an
analytical solution is not available. Under those circumstances, the modeler must
resort to numerical methods to solve the equations, but it illustrates the historical
approach.
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With modern computers another approach to obtaining a function, f̂ (h), is pos-
sible; an ANN can be used. Instead of constraining the system with a natural law,
it is constrained empirically, with a dataset. ANNs are trained with supervised
learning techniques. They can be thought of as functions that start as raw clay.
Supervised training moulds the clay into the desired shape (an accurate model),
and the desired model is specified with a dataset, that is, the dataset defines the
model, not a natural law. To demonstrate, the example of f (h) is revisited.

Training the ANN is done with supervised learning techniques. The raw clay
of the untrained ANN function needs to be defined by data, so the first step is to
collect data. This is done by measuring the time to fall from a number of different
heights. This would result in a dataset of the form, {(h1, t1),… , (hN , tN )}, where
each tuple consists of the height and the time to fall to the ground. Using the data,
the ANN can be trained and we obtain,

t = ANN(h) ≡ f̂ (h). (1.5)

Once trained, the ANN model approximates f̂ (h) ≈ f (h), the analytical solution.
There are now two models, hopefully producing the same results, but arrived

at with completely different techniques. The results of both are depicted in
Figure 1.2. There are, however, some meaningful differences. First, the ANN is
a black box, it may be correct, but nothing can really be said about it. The final
model does not admit of interpretability. The analytical result can be used to
predict asymptotic behavior or the rearrangement of variables for further insights.
Moreover, the analytical solution was obtained by rearranging the solution to the
differential Eq. (1.4). Second, the training of the ANN uses far more compute
resources, memory, and CPU, than the analytical solution. And finally, assembling
the dataset is a great deal of trouble. In this trivial example, someone already did
that and arrived at the gravitational constant, g. Comparing the two methods, the
ANN approach seems like a great deal more trouble.

This begs the question, given the seeming disadvantage of ANNs, why would
anyone ever use them? The answer lies in the differences between the approaches,
the seeming “disadvantages.” The ANN approach, training with raw data, did
not require any understanding or insight of the underlying process that produced
the data to build an accurate model, none. The model was constrained empiri-
cally – the data, and no constraint in the form of a natural law or principle was
required. This is extremely useful for many modern problems of interest.

Consider the problem of classifying black-and-white digital images as one of
either a cat, a dog, or a giraffe; we need a function. The function is f:ℝM → 𝕂,
where 𝕂 is the set, 𝕂={ cat, dog, giraffe }, and M is the resolution of the
image. For such applications, empirically specifying the function is the only means
of obtaining the model. There are no other constraints available, Einstein can-
not help with a natural law, the Black Scholes equation is of no use, nor can a
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Figure 1.2 The graph of t = f (h), is plotted with empty circles as points. The ANN(h)’s
predictions are crosses plotted over them. The points are from training dataset. The ANN
seems to have learnt the function.

principle such as “no arbitrage” be invoked. There is no natural starting point.
The underlying process is unknown, and probably unknowable. The fact that we
have no insight into the process producing the data is no hinderance at all. There is
a drawback in that the resulting model is not interpretable, but never the less the
approach has been immensely successful. Using supervised learning techniques
for this application imposes the requirement to collect a set of images and labeling
them with the correct answer (one of the three possible answers). Thus, ignoring
the need for interpretability or an understanding of the generating process, it is
possible to accurately model a whole new set of applications.

Even for applications where natural laws exist leading to a system of con-
straints, ANNs are beginning to enjoy some success. Combinatoric problems such
as protein folding have been successfully addressed with ANNs (16). ANNs are
better at predicting the shapes of proteins than approaches solving the differential
equations and quantum mechanical constraints. Large problems lacking an
analytical solution, such as predicting the paths of hurricanes, are investing in
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the use of ANNs to make predictions that are more accurate (22). There are many
more examples.

1.3.2 The Biological Phenomenon and the Analogue

Finally, it is worth bearing in mind the inherent differences between the DL mod-
els composed of ANNs and animal brains. ANNs were motivated by, and attempted
to simulate, biological neuron assemblies (Hebb and Rosenblatt were psycholo-
gists). Owing to the success of DL, the nature of the simulation is often lost while
retaining the connection; this can be unfortunate.

It must not be forgotten that biological neural networks are physical; they are
cells, “hardware.” Biological neurons operate independently, asynchronously, and
concurrently; they are the unit of computation. In this sense, a brain is a biological
parallel computer. ANNs are software simulating biological hardware on a com-
pletely different computer architecture. There are inherent differences between
the biological instance and the simulation that render the ANN inefficient. A simu-
lated neuron must wait to have its state updated when a signal “arrives.” The delay
is owing to waiting in a queue for its turn on a CPU core – the simulation’s unit
of computation. Biological neurons are the “CPU”s and continually update them-
selves. A human brain has approximately 100 billion neurons with an average of
10,000 synapses (connections) each (79), and they do not need to wait their turn to
compute state – they are the state. The ANN simulation must queue all its virtual
neurons serially for a chance on a CPU to update their state. To do this efficiently,
DL models typically impose strong restrictions on the topology of the network of
virtual neuron connections. ANN software is simulating a parallel computer on a
serial computer. Even allowing for the parallelism of GPUs, the simulation is still
O(number of neurons). The characteristics are different too: a biological neural
network is an analog computer and modern computers are digital.

The nature of a computer is also very much at variance with an animal brain.
A human brain uses around 20 W of energy (79). An Intel Xeon CPU consumes
between 200 and 300 W, as do GPUs. The power usage of the GPU farms used
to train Google’s BERT or NVIDIA’s GANN is measured in kilowatts. Training
language models can cost US$8,000,000 just for the electricity (19). It is also com-
mon to compare biological neurons to transistors. It is a really fine example of an
apple to orange comparison. Transistors have switching times in the order of 10−9

seconds. Biological neuron switching times are in the order of 10−3 seconds. Tran-
sistors typically have 3 static connections, while neurons can have thousands of
connections. A neuron’s set of connections, synapses, can be dynamically adapt-
ing to changing circumstances. Neurons perform very different functions, and
a great many transistors would be required to implement the functionality of a
single neuron.
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None of this is to say that DL software is inappropriate for use or not fit for
purpose, quite the contrary, but it is important to have some perspective on the
nature of the simulation and the fundamental differences.

1.4 Numerical Computation – Computer Numbers Are
Not ℝeal

Before presenting DL algorithms, it should be emphasized that ANNs are mathe-
matical algorithms implemented on digital computers. When reading this text, it
is important to understand that naïve computer implementations of mathematical
methods can lead to surprising 7 results. Blindly typing equations into a computer
is often a recipe for trouble, and DL is no exception. Arithmetic is different on a
computer and varies in unexpected ways, as will be seen. Unlike the normal arith-
metical operations of addition and subtraction, most computer implementations
of them are not associative, distributive, or commutative. The reader is encour-
aged to peruse this section with a computer and experiment to aid understanding
the pitfalls.

Consider the interval, S = [1,2] ⊂ ℤ, a subset of the natural numbers. The cardi-
nality of S, |S|, is two. Intervals of the natural numbers are countable. Now consider
S = [1,2] ⊂ ℝ. The real number line is continuous, a characteristic relied upon by
the calculus. So, in this case, |S| = ∞. Indeed, S = [1, 1.0000001] ⊂ ℝ also has a
cardinality of infinity. Equations are generally derived assuming that ℝ is avail-
able, but the real number line does not exist in a computer. Computers simulate
ℝ with a necessarily discrete (finite) set called floating point numbers. This has
profound implications when programming. Two mathematically equivalent algo-
rithms can behave completely differently when implemented on the same digital
computer.

By far, the most common implementation of floating point numbers on mod-
ern digital computers is the IEEE-754 standard for floating point values (25). First
agreed in 1985, it has been continually updated ever since. Intel’s x86 family of
processors implement it as well as Apple’s ARM chips, such as the Mx family of
SoCs. It is often misunderstood as simply a format for representing floating point
numbers, but it is actually a complete system defining behavior and operations,
including the handling of errors. This is extremely important as running a pro-
gram on different CPU architectures that are IEEE-754 compliant will yield the
same numerical results. The most common IEEE-754 floating point types are the

7 “Surprising” is an engineering and scientific euphemism for unwelcome.
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32-bit (“single-precision”) and the 64-bit (“double-precision”) formats.8 Computer
languages usually expose them as native types and the programmer uses them
without realizing it. It is immediately clear that, by their very nature of being finite,
an IEEE representation can only represent a finite subset of real numbers. A 32 bit
format for floating point numbers can, at most, represent 232 values; that is a long
way from infinity.

To illustrate the pitfalls of floating point arithmetic, we present a simple com-
puter experiment following the presentation of Forsythe (41) and the classic Linear
Algebra text, Matrix Computations (49). Consider the polynomial, ax2 + bx + c.
The quadratic equation, a seemingly innocuous equation known by all school chil-
dren, computes the roots with the following:

root = −b ±
√

b2 − 4ac
2a

. (1.6)

There are two roots. At first glance, this appears to be a trivial equation to imple-
ment. For the smallest root of the quadratic (a = 1, b = −2p, and c = −q):

root− = p −
√

p2 + q, (1.7)

or, alternatively,

root− =
−q

p +
√

p2 + q
. (1.8)

Both of these forms are mathematically equivalent, but they are very different
when implemented in a computer. Letting p = 12,345, 678 and q = 1, and trying
both methods, two different answers are obtained (assuming an IEEE 754 dou-
ble precision implementation): −4.097819e-08 and −4.05e-08, respectively. Only
the latter root is correct despite both equations being mathematically equivalent
(verify this!). To understand what has occurred, and how to avoid it, we must
examine how floating point numbers are represented in a computer.

1.4.1 The IEEE 754 Floating Point System

Digital computers represent quantities in binary form, that is, base 2 (base is also
known as the radix). Modern humans think in decimal.9 People write numbers
with an implied radix of 10, but there is nothing special about decimal numbers.
For example, 210 = 102 and 1010 = 10102. In everyday life, people drop the sub-
script as the base of 10 is assumed.

8 The “C” language types float and double often correspond with the 32-bit and 64-bit types
respectively, but it is not a language requirement. Python’s float is the double-precision type
(64-bit).
9 The oldest number system that we know about, Sumerian (c. 3,000 BC), was sexagesimal, base
60, and survives to this day in the form of minutes and seconds.
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1 0 1 1 0 0 1 1 1 1 1 10 0 001 1 1 1 0 0 1 0 0 0 1 1 1 0 0 1

Exponent (8 bits)± Mantissa (23 bits)

Figure 1.3 IEEE-754 representation for the value of 4.050000 ⋅ 10−8. The exponent is
biased and centered about 127, and the mantissa is assumed to have a leading “1.”

The integers are straight forward, but representing real numbers requires more
elaboration. The correct root was written in scientific notation, −4.050000 ⋅ 10−8.
There are three distinct elements in this form of a number. The mantissa, or sig-
nificand, is the sequence of significant digits, and its length is the precision, 8 in
this case. It is written with a single digit to the left of the decimal point and mul-
tiplied to obtain the correct order of magnitude. This is done by raising the radix,
10 in this case, to the power of the exponent, −8. The IEEE-754 format for 32-bit
floating point values encodes these values to represent a number, see Figure 1.3.
So what can be represented with this system?

Consider a decimal number, abc.def, each position represents an order of mag-
nitude. For decimal numbers, the positions represent:

100 + 10 + 1 ⋅
1

10
+ 1

100
+ 1

1000
,

while binary numbers look like:

4 + 2 + 1 ⋅
1
2
+ 1

4
+ 1

8
Some floating point examples are 0.510 = 0.12 and 0.12510 = 0.0012. So far so

good, but what of something “simple” such as 0.110? Decimal 0.1 is represented
as 0.000112, where the bar denotes the sequence is repeated ad infinitum. This
can be written in scientific notation as 1.100 ⋅ 2−4. Using the 32-bit IEEE encod-
ing its representation is 00111101110011001100110011001101. The first bit is the
sign bit. The following 8 bits form the exponent and the remaining 23 bits com-
prise the mantissa. There are two seeming mistakes. First, the exponent is 123. For
efficiently representing normal numbers, the IEEE exponent is biased, that is, cen-
tered about 127 ∶ 127 − 4 = 123. The second odd point is in the mantissa. As the
first digit is always one it is implied, so the encoding of the mantissa starts at the
first digit to the right of the first 1 of the binary representation, so effectively there
can be 24 bits of precision. The programmer does not need to be aware of this – it all
happens automatically in the implementation and the computer language (such
as C++ and Python). Converting IEEE 754 back to decimal, we get, 0.100000001.10

10 What is 10% of a billion dollars? This is a sufficiently serious problem for financial software
that banks often use specialized routines to ensure that the money is correct.
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Observe that even a simple number like 1/10 cannot be represented in the IEEE
32-bit values, just as 1/3 is difficult for decimal, 0.310.

Let 𝔽 ⊂ ℝ be the set of IEEE single-precision floating point numbers. Being
finite 𝔽 will have minimum and maximum elements. They are 1.17549435E-38
and 3.40282347E+38, respectively. Any operation that strays outside of that range
will not have a result. Values less than the minimum are said to underflow, and
values that exceed the maximum are said to overflow. Values within the supported
range are known as normal numbers. Even within the allowed range, the set is
not continuous and a means of mapping values from ℝ onto 𝔽 is required, that
is, we need a function, fl(x) ∶ ℝ → 𝔽 , and the means prescribed by the IEEE 754
standard is rounding.

All IEEE arithmetical operations are performed with extra bits of precision.
This ensures that a computation will produce a value that is superior to the
bounds. The result is rounded to the nearest element of 𝔽 , with ties going
to the even value. Specifying ties may appear to be overly prescriptive, but
deterministic computational results are very important. IEEE offers 4 rounding
modes,11 but rounding to nearest value in 𝔽 is usually the default. Rounding
error is subject to precision. Given a real number, 1.0, what is the next largest
number? There is no answer. There is an answer for floating point numbers,
and this gap is the machine epsilon, or unit roundoff. For the double precision,
IEEE-754 standard the machine epsilon is 2.2204460492503131e-16. The width
of a proton is 8.83e-16 m, so this is quite small (computation at that scale would
choose a more appropriate unit than meters, such as Angstroms, but this does
demonstrate that double precision is very useful). The machine epsilon gives the
programmer an idea of the error when results are rounded. Denote the machine
epsilon as u. The rounding error is |fl(x) − x| ≤ 1

2
u. This quantity can be used to

calculate rigorous bounds on the accuracy of computations and algorithms when
required.

Let us revisit our computation of the smallest root, which was done in double
precision. p was very close to the result of the square root. For our values of p and
q, p ≈

√
p2 + q, and so performing p− ≈ p (p minus almost p) canceled out all of

the information in the result. This effect is known as catastrophic cancellation,
but it is widely misunderstood. A common misconception is that it is a bad
practice to subtract floating point numbers that are close together, or add floating
point numbers that are far apart, but that is not necessarily true. In this case, the
subtraction has merely exposed an earlier problem that no longer has anywhere
to hide. The square root is 12,345,678.000000040500003, but it was rounded to

11 In C, the mode is specified with FLT_EVAL_METHOD, the default is defined in float.h.
Python does not have a standard means of specifying the IEEE rounding mode.
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12,345,678.000000041 so that the result can fit in a double-precision value. In
a large number like that the relative error is manageable, but when subtracted
from a nearby number the rounding error is completely exposed; the relative
error explodes. The correct rule of thumb is to be careful with results that are
contaminated with rounding error. The relative error needs to be minimized. In
this case, producing the final result with a division was much safer. Theoretically,
both methods should produce the same result, they do on paper, but in practice
the minutia of computer arithmetic is important.

The properties of addition and subtraction of 𝔽 are also different, for example,
associativity does not always hold: (x + y) + z ≠ x + (y + z). Consider a machine
with 3 digits of precision, it is easy to show that on a computer the rules of
arithmetic do not necessarily apply. Setting x, y, and z to 1.24, −1.23, and 0.001,
respectively, two different results are obtained. The result on the left is 0.011, and
the result on the right is 0.01. fl(−1.23 + 0.001) loses the precision required to
contain the answer; the order mattered. Performing the operations in the reverse
order, turning two large numbers into a smaller number prior to an operation
with another smaller number increased the chances of obtaining the correct
answer. Planning the sequence of operations can be very important.

1.4.2 Numerical Coding Tip: Think in Floating Point

A common algorithmic activity is to loop waiting for some value to reach 0.0, such
as a residual error. A terrible mistake is to code something like:

while (error != 0.0) {
// some code

}

The error may never reach 0.0 or potentially pass through it. A better way is to
test with the operator, ≥. Even if it is “mathematically impossible” for the error in
question to be less than zero, when working with 𝔽 instead of ℝ there are always
nasty surprises. Paranoia is the only means of reducing the chance of terrible and
undebuggable errors.

In general, the same caution should be exercised when testing the result of any
computation. For example, when verifying that a matrix inversion is correct, an
obvious test is to compute A−1A = I. A simple test for correctness might look like
Algorithm 1.1.

Algorithm 1.1 will almost certainly fail, even though the implementation of the
algorithm that computed it is correct. The expected 1s and 0s are rarely so precise
and have tiny residuals. In general, it is best to use a tolerance when testing for a
desired value. A better way of verifying the result is Algorithm 1.2.
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Algorithm 1.1 Unsafe verification of an identify matrix
1: for i ∈ rows do
2: for j ∈ columnsj do
3: if i == j then
4: assert (I[i,j] == 1.0) ⊳ I[i,j] more likely to be 1.000021
5: else
6: assert (I[i,j] == 0.0) ⊳ I[i,j] more likely to be -0.0000309
7: end if
8: end for
9: end for

Algorithm 1.2 The use of a tolerance to verify a matrix
1: for i ∈ rows do
2: for j ∈ columnsj do
3: if i == j then
4: assert (𝖺𝖻𝗌(1 - I[i,j]) ≤ 𝜖) ⊳ Subtract the expected 1 to get 0
5: else
6: assert (I[i,j] ≤ 𝜖)
7: end if
8: end for
9: end for

The choice of 𝜖 will be a suitably small value that the application can toler-
ate. In general, comparison of a computed floating point value should be done
as abs(𝛼 − x), where x is the computed quantity and 𝛼 is the quantity that is being
tested for. Note that printing the contents of I to the screen may appear to produce
the exact values of zero and one, but print format routines, the routines whose jobs
is to convert IEEE variables to a printable decimal string, do all kinds of things and
often mislead.

A great contribution of the IEEE system is its quality as a progressive system.
Many computer architectures used to treat floating point errors, such as division
by zero, as terminal. The program would be aborted. IEEE systems continue to
make progress following division by zero and simply record the error condition in
the result. Division by zero and

√
−1 results in the special nonnormal value “not a

number” recorded in the result (NaN). Overflow and underflow are also recorded
as the two special values, ±∞ (if used they will produce an NaN). These error
values need to be detected because if they are used, then the error will contaminate
all further use of the tainted value. Often there is a semantic course of action that
can be adopted to fix the error before proceeding. They are notoriously difficult to
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debug so it is critical to catch numerical problems early. At key points in a program,
it can be useful to check for unwanted errors. Many languages offer facilities to test
for the special values. POSIX C implements isnan and isinf to test for errors, and
Python’s math package implements both as well.

We conclude with some rules of thumb to bear in mind when writing floating
point code:

● Avoid subtracting quantities when one of them is contaminated with error (such
as round off) – this is the root of catastrophic cancelation.

● Avoid computing quantities with much larger intermediate values than the
result. Such computations need to be designed carefully if unavoidable. The
canonical example is computing the variance with 𝜎2 = 𝔼(x2) − 𝔼(x)2.

● Consider the ramifications when implementing a mathematical expression
and anticipate problems. Expanding or simplifying an expression may have
consequences. Prefer division to subtraction. Plan the sequence of operations
carefully.

● Overflow and underflow should be monitored when possible.
● Check for IEEE error conditions when they are possible.

These are rules of thumb. Thinking in floating point improves the chances of get-
ting things right. ANNs can require trillions of floating point operations to train or
millions to compute so when things go wrong the debugging can be extremely
challenging. A single NaN, which at least makes it clear that something went
wrong, will void all progress; but at least the problem is visible. More pernicious
are the silent problems such as the inaccuracies resulting from catastrophic can-
celation – so plan well.

1.5 Summary

While DL has become synonymous with AI in the public’s imagination, it is a
subfield of machine learning, which in turn is a specialization of AI. ANNs are
models produced by constraining a system empirically with a dataset. They are
of use when there is no other convenient constraint available, such as a law of
nature. The resultant model is usually not interpretable. The real number line does
not exist in a digital computer. When dealing with any kind of computer model,
care must be taken that the arithmetic has not gone wrong. Appendix I provides
a brief review of the mathematics required to understand the text. It also includes
references to further reading.



�

� �

�

1.6 Projects 21

1.6 Projects

1. Formulate a definition of intelligence. Complement it with a set of testable
criteria. If the criteria are empirical, compose a single score that summarizes
the “intelligence” of a system that was tested.

2. Contrive a formula that exhibits catastrophic cancelation. How did you verify
that it does indeed produce the wrong answer?

3. In your favorite computer language initialize a variable x to 0.0. Write a loop
that accumulates 0.1 in x 10 times. The test, x = 1.0, results in a false (do not
just print the result). What went wrong?
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2

Deep Learning and Neural Networks

In Chapter 1, it was stated that deep learning (DL) models are based on artificial
neural networks (ANNs). In this chapter, deep learning will be defined more pre-
cisely, which is still quite loose. This will be done by connecting deep learning
to ANNs more concretely. It was also claimed that ANNs can be interpreted as
programmable functions. In this chapter, we describe what those functions look
and how ANNs compute values. Like a function, an ANN accepts inputs and com-
putes an output. How an ANN turns the input into the output is detailed. We also
introduce the notation and abstractions that we use in the rest of the text.

A deep learning model is a model built with an artificial neural network, that is,
a network of artificial neurons. The neurons are perceptrons. Networks require a
topology. The topology is specified as a hyperparameter to the model. This includes
the number of neurons and how they are connected. The topology determines how
information flows in the resulting ANN configuration and some of the properties
of the ANN. In broad terms, ANNs have many possible topologies, and indeed
there are an infinite number of possibilities. Determining good topologies for a
particular problem can be challenging; what works in one problem domain may
not (probably will not) work in a different domain. ANNs have many applications
and come in many types and sizes. They can be used for classification, regression,
and even generative purposes such as producing a picture. The different domains
often have different topologies dictated by the application. Most ANN applications
employ domain-specific techniques and adopt trade-offs to produce the desired
result. For every application, there are a myriad of ANN configurations and param-
eters, and what works well for one application may not work for others. If this
seems confusing – it is (107; 161). A good rule of thumb is to keep it as simple as
possible (93).

Demystifying Deep Learning: An Introduction to the Mathematics of Neural Networks,
First Edition. Douglas J. Santry.
© 2024 The Institute of Electrical and Electronics
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2.1 Feed-Forward and Fully-Connected Artificial
Neural Networks

This section presents the rudiments of ANN topology. One topology in particu-
lar, the feed-forward and fully-connected (FFFC), topology is adopted. There is
no loss of generality as all the principles and concepts presented still apply to
other topologies. The focus on a simple topology lends itself to clearer explana-
tions. To make matters more concrete, we begin with a simple example presented
in Figure 2.1. We can see that an ANN is comprised of neurons (nodes), connec-
tions, and many numbers. Observing the figure, it is clear that we can interpret an
ANN as a directed graph, G(N,E). The nodes, or vertices, of the graph are neurons.
Neurons that communicate immediately are connected with a directed edge. The
direction of the edge determines the flow of the signal.

The nodes in the graph are neurons. The neuron abstraction is at the heart of
the ANN. Neurons in ANNs are generally perceptrons. Information, that is, sig-
nals, flow through the network along the directed edges through the neurons. The
arrow indicates that a signal is coming from a source neuron and going to a target
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Figure 2.1 A trained ANN that has learnt the sine function. The circles, graph nodes, are
neurons. The arrows on the edges determine which direction the communication
flows.
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neuron. There are no rules respecting the number of edges. Most neurons in an
ANN are both a source and a target. Any neuron that is not a source is an output
neuron. Any neuron that is not a target is an input neuron. Input neurons are the
entry point to the graph, and the arguments to the ANN are supplied there. Out-
put neurons provide the final result of the computation. Thus, given ŷ = ANN(x),
x goes to the input neurons and ŷ is read from the output neurons. In the example,
x is the angle, and ŷ is the sine of x.

Each neuron has an independent internal state. A neuron’s state is computed
from the input signals from connected source neurons. The neuron computes
its internal state to build its own signal, also known as a response. This internal
state is then propagated in turn through the directed edges to its target neurons.
The inceptive stage for the computation is the provision of the input arguments
to the input neurons of the ANN. The input neurons compute their states and
propagate them to their target neurons. This is the first signal that triggers the
rest of the activity. The signals propagate through the network, forcing neurons
to update state along the way, until the signal reaches the output neurons, and
then the computation is finished. Only the state in the output neurons, that is,
the output neurons’ responses, matter to an application as they comprise the
“answer,” ŷ.

Neurons are connected with edges. The edges are weighted by a real number.
The weights determine the behavior of the signals as received by the target
neuron – they are the crux of an ANN. It is the values of the weights that
determine whether an ANN is sine, cosine, ex – whatever the desired function.
The weights in Figure 2.1 make the ANN sine. The ANN in Figure 2.2 is a cosine.
The graphs in Figure 2.3 present their respective plots for 32 random points. Both
ANNs have the same topologies, but they have very different weights. It is the
weights that the determine what an ANN computes. The topology can be thought
of as supporting the weights by ensuring that there is a sufficient number of them
to solve a problem; this is called the learning capacity of an ANN.

The weights of an ANN are the parameters of the model. The task of training
a neural network is determining the weights, w. This is reflected in the notation
ŷ = ANN(x;w) or ŷ = ANN(x|w) where ŷ is conditioned on the vector of parame-
ters, w. Given a training set, the act of training an ANN is reconciling the weights
in a model with the examples in the training set. The fitted weights should then
produce a model that emits the correct output for a given input. Training sets con-
sisting of sine and cosine produced the ANNs in the trigonometric examples,
respectively. Both sine and cosine are continuous functions. As such building
models for them are examples of regression, we are explaining observed data from
the past to make predictions in the future.

The graph of an ANN can take many forms. Without loss of generality, but
for clarity of exposition, we choose a particular topology, the fully-connected
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Figure 2.2 A trained ANN that has learnt the cosine function. The only differences with
the sine model are the weights. Both ANNs have the same topologies.
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circles are taken from the training set and comprise the ground truth.
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feed-forward architecture, as the basis for all the ANNs that we will discuss.
The principles are the same for all ANNs, but the simplicity of the feed-forward
topology is pedagogically attractive.

Information in the feed-forward ANN flows acyclically from a single input layer,
through a number of hidden layers, and finally to a single output layer; the signals
are always moving forward through the graph. The ANN is specified as a set of
layers. Layers are sets of related, peer, neurons. A layer is specified as the number
of neurons that it contains, the layer’s width. The number of layers in an ANN is
referred to as its depth. All the neurons in a layer share source neurons, specified
as a layer, and target neurons, again, specified as a layer. All of a layer’s source
neurons form a layer as do its target neurons. There are no intralayer connections.
In the language of graph theory, isolating a layer produces a tripartite graph. Thus,
a layer is sandwiched between a shallower, source neuron layer, and a deeper target
layer.

The set of layers can be viewed as a stack. Consider topology in Figure 2.1, with
respect to the stack analogy, the input layer is the top, or the shallowest layer, and
the output layer is the bottom, or the deepest layer. The argument is supplied to
the input layer and the answer read from the output layer. The layers between the
input and output layers are known as hidden layers.

It is the presence of hidden layers that characterizes an ANN as a deep learning
ANN. There is no consensus on how many hidden layers are required to qualify as
deep learning, but the loosest definition is at least 1 hidden layer. A single hidden
layer does not intuitively seem very deep, but its existence in an ANN does put
it in a different generation of model. Rosenblatt’s original implementations were
single layers of perceptrons, but he speculated on deeper arrangements in his book
(130). It was not clear what value multiple layers of perceptrons had given his
linear training methods. Modern deep learning models of 20+ hidden layers are
common, and they continue to grow deeper and wider.

The process of computing the result of an ANN begins with supplying the argu-
ment to the function at the input layer. Every input neuron in the input layer
receives a copy of the full ANN argument. Once every neuron in the input layer
has computed its state with the arguments to the ANN, the input layer is ready
to propagate the result to next layer. As the signals percolate through the ANN,
each layer accepts its source signals from the previous layer, computes the new
state, and then propagates the result to the next layer. This continues until the
final layer is reached; the output layer. The output layer contains the result of
the ANN.

To further simplify our task, we specify that the feed-forward ANN is fully con-
nected, sometimes also called dense. At any given layer, every neuron is connected
to every source neuron in the shallower layer; recursively, this implies that every
neuron in a given layer is a source neuron for the next layer.
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Figure 2.4 The sine model in more detail. The layers are labeled. The left is shallowest
and the right is the deepest. Every neuron in a layer is fully connected with its shallower
neighbor. This ANN is specified by the widths of it layers, 3, 2, 1, so the ANN
has a depth of 3.

Let us now reexamine the ANN implementing sine in Figure 2.4 in terms of
layers. We see that there are 3 layers. The first layer, the input layer, has 3 neu-
rons. The input layer accepts the predictors, the inputs of the model. The hidden
layer has 2 neurons, and the output layer has one neuron. There can be as many
hidden layers as desired, and they can also be as wide as needed. The depths and
the widths are the hyperparameters of the model. The number of layers and their
widths should be kept as limited as possible (93). As the number of weights grows,
that is, trainable parameters, the size of the ANN increases exponentially. Too
many weights also leads to other problems that will be examined in later chapters.

As sine is a scaler function, there can only be one output neuron in the ANN’s
output layer; that is, where the answer (sine) can be found. Notice, however, that
the number of input neurons is not similarly constrained. Sine has only one pre-
dictor (argument), but observe that there can be any number of neurons in the
input layer. They will each receive a copy of the arguments.

The mechanics of signal propagation form the basis of how ANNs compute.
Having seen how the signals flow in a feed-forward ANN, it remains to examine
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what those signals are and how they are computed. This will lead to a recurrence
equation that we will use to succinctly describe the computation. This is the topic
of the Section 2.2.

2.2 Computing Neuron State

The signals percolating through the graph of the ANN are the states of the neurons.
The state of an individual neuron is computed from the signals received from its
source neurons; the immediately shallower layer. The signals are weighted on a
per edge basis. Perceptrons are used as neurons and so their state is computed as
follows. Each neuron, nj, in a layer, 𝓁, computes the following dot product with
independent weights:

∀nj ∈ 𝓁 ∶ uj =
M𝓁−1∑

i
ziwj,i + wj,b, (2.1)

where the shallower layer has M𝓁−1 neurons and the zi are the shallower signals.
As the ANN is fully connected that corresponds directly to the number of source
inputs for the current layer, 𝓁. The wj,i have two subscripts. The subscript is read
as the weight on the edge from neuron i to neuron j. The numbers on the edges in
the example ANN graphs are weights, not signals. Each layer also has an implicit
bias input that is always 1 (zb ≡ 1). The neurons can use the bias to translate their
dot products with their bias’ weight, wj,b. Thus, a layer 𝓁 with M𝓁 neurons has
M𝓁−1 + 1 inputs, the previous layer’s neurons and the bias. This means that every
neuron, nj, needs M𝓁−1 + 1 weights. As the layer 𝓁 has M𝓁 neurons, the layer 𝓁
requires M𝓁 ⋅ (M𝓁−1 + 1) weights.

Returning to the earlier sine example, we can now interpret Figure 2.4 com-
pletely. The bias is the gray node in each layer. Observing the weights on every
edge, as expected, the input layer with 3 neurons has a total of 6 weights: 3 for the
single input and 3 for the bias, which is 1.0 by definition.

2.2.1 Activation Functions

There is one final step to computing a neuron’s signal. Following the computation
of the per neuron dot products, each neuron applies an activation function to its
dot product. This constitutes the final step in the computation of a neuron’s state
and forms a neuron’s response, that is, its output signal. A neuron’s response is
written as 𝜎(uj), where uj is the jth neuron’s dot product computed above. So the
jth’s neuron’s response, zj = 𝜎(uj), in layer 𝓁 is:

zj = 𝜎(uj) = 𝜎

(M𝓁−1∑
i

ziwj,i + wj,b

)
. (2.2)
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Not any function can act as an activation function. The activation function plays
an important role when computing the final state. Dot products can produce
arbitrary values. An activation function can tame the dot products. If a specific
range is required then an activation function can be selected accordingly. Two
common requirements are to either map the scaler product between [−1, 1],
or make it strictly positive. Activation functions also add non-linearity to the
neuron’s response making it possible to handle more challenging problems. Three
important activation functions are, tanh (hyperbolic tangent), sigmoid and RelU.
Their curves are depicted in Figure 2.5. While superficially similar, they differ in
important ways. Both tanh and sigmoid tend to squish their domain into a narrow
range. The former is centered about zero and produces a result between [−1, 1].
The sigmoid’s range is [0, 1]. The sigmoid is historically important lending its
symbol, 𝜎, to the notation for activation functions. As we shall see in Chapter
3, all three have important niches. For the moment we examine the sigmoid

function.
The sigmoid was the first activation function (162) and its use was inspired by

biological processes. The idea was that a neuron was either “on” or “off.” This was
abstracted as 0 or 1. While the desired behavior suggests a Heaviside function the
sigmoid was attractive for a number of reasons, and certainly has a number of
advantages. The sigmoid is continuous, differentiable everywhere and non-linear.
As we shall see in Chapter 3, the sigmoid is also very convenient when a derivative
is required. The sigmoid function is defined as:

z = 𝜎(u) = 1
1 + e−u . (2.3)

Its range is roughly [0, 1] but its interesting dynamics are in the domain [−3, 3].
As u grows very negative or very positive the sigmoid becomes saturated and the
asymptotic behavior manifests itself; it mimics the Heaviside function and is either
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Figure 2.5 Three popular activation functions. The two on the left are superficially
similar, but note the tanh’s range is centered on 0.0 and the sigmoid’s range is centered
on 0.5.
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“on” or “off.” Ideally weights, the determiners of u, avoid saturating the activation
functions because adjusting the output becomes more difficult. A neuron that is
fixed in the −10ish domain will always be −1, and may as well be dropped from
the network.

More recently introduced, an important family of activation functions for deep
learning tasks is the rectified linear unit, ReLU. The ReLU is defined as

ReLU(u) = u+ = max (0, u). (2.4)

It tends to be deployed in deeper ANNs (ANNs with many hidden layers) for the
reasons for which will be exaplined in Section 3.5.4. It adds an element of nonlin-
earity while its derivative has attractive qualities, which is important when train-
ing deep ANNs (42). Saturated weights are less of a problem, but the nonlinearity
is far less pronounced. When introduced to the ANN community, it was used to
set a record, at the time, for depth in an ANN in AlexNet (89) that also resulted in
setting an accuracy record.

We shall refer to the activation function generically as 𝜎(u), where u is the scaler
product of weights and inputs, but unless specified 𝜎 is not a particular activation
function.

2.3 The Feed-Forward ANN Expressed with Matrices

We have seen that the propagation of signals through an ANN proceeds from layer
to layer, starting from the input. Each layer is comprised of neurons that need to
compute the dot product of its weights with the signal from the previous layer. The
computation can be expressed concisely with matrices.

We can express the propagation, or arrival, of a signal at a layer with a matrix
multiplication. A matrix of weights, W𝓁 , can be constructed by populating each
row with the weights of an individual neuron; the jth row of W𝓁 containing the
weights for the jth neuron. The ith column of W𝓁 corresponds to the weights on the
edges from the ith neuron in the previous layer. Thus the matrix element W𝓁[j, i] is
the weight for the edge from neuron i in 𝓁−1 to j in 𝓁. Each row in the W𝓁 matrix
encapsulates the weights vector of a neuron in that layer, and every layer has its
own matrix. Note that if the ANN is not fully connected the missing connections
could be represented with zeros in the appropriate matrix entries. The matrix for
the hidden layer of the sine in Figure 2.4 is

Whidden =
(
−1.09484 0.74208 1.48851
−2.76817 −1.37805 1.3605

)
.
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We can now express the first step of computing the states of neurons, the per neu-
ron scaler products of arguments and weights, with a matrix multiplication. The
dot products of all the neurons in a layer can now be written as

u𝓁 = W𝓁z𝓁−1 + b𝓁 , (2.5)

where u is a vector and b𝓁 the vector of bias weights. In computational linear alge-
bra, this is known as a general Ax + y, or GAXPY operation (49), and there are
many software libraries that implement it efficiently.

Once the per neuron scaler products have been computed the activation func-
tion can be applied and a layer’s output, z𝓁 , computed. This results in

z𝓁 = 𝜎(u𝓁) = 𝜎(W𝓁z𝓁−1 + b𝓁). (2.6)

Here the activation function has been applied on a per element basis of its argu-
ment vector, u𝓁 , producing a new vector of the same dimension, the final result
for the layer, z𝓁 .

We can now express the total computation of an ANN concisely. We define ℒ
as the ordered list of the layers of our ANN, that is, { 𝓁1,… ,𝓁depth}. The computa-
tion of the response for a feed-forward ANN can be expressed with the following
algorithm:

Algorithm 2.1 Feed-Forward and Fully-Connected ANN Computation
1: procedure ANN(x)
2: z𝓁−1 ← x
3: for 𝓁 ∈ ℒ do
4: u𝓁 ← W𝓁 ⋅ z𝓁−1 + b𝓁

5: z𝓁 ← 𝜎(u𝓁)
6: end for
7: ŷ ← z𝓁
8: return ŷ
9: end procedure

The procedure can be invoked as ŷ = ANN(x). Returning to the running sine

example, the argument, x, is a scalar, the angle in radians. There are 3 layers, so
there will be 3 iterations through the loop. The routine would produce the ANN’s
approximation of sine(x) in the final iteration and assign it to ŷ prior to returning
it to the caller.

2.3.1 Neural Matrices: A Convenient Notation

For clarity of exposition, we introduce a notation based on standard linear algebra.
We define a new object, the neural matrix. It is the same as a normal matrix but
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includes an extra column. The first column consists of the bias weights for a layer.
For a layer 𝓁−1 with m neurons and a layer 𝓁 with n neurons the weight matrix
looks like:

W𝓁 =

⎛⎜⎜⎜⎜⎝
w1,b w1,1 w1,2 · · · w1,m
w2,b w2,1 w2,2 · · · w2,m
⋮

wn,b wn,1 aw,2 · · · wn,m

⎞⎟⎟⎟⎟⎠
. (2.7)

To make this work there is an implied 1.0 in the first position of the input vector,

z𝓁−1 =

⎛⎜⎜⎜⎜⎝
1.0
z1
⋮

zm

⎞⎟⎟⎟⎟⎠
, (2.8)

where the shallower response vector has been prefixed with 1 and the remaining
entries pushed down. The dot product and bias translation can now be written
more concisely as

u𝓁 = W𝓁z𝓁−1. (2.9)

Revisiting the example in Figure 2.4 the resulting neural matrix is

Whidden =
(
−0.53813 −1.09484 0.74208 1.48851
−0.65412 −2.76817 −1.37805 1.3605

)
. (2.10)

It is just notional sugar for expressing Wz + b. This is proposed for notational con-
venience only; it has no mathematical implications. In the remainder of the text,
Wz can be construed as Wz + b.

2.4 Classification

Classification is an important application of ANNs. Many problems can be framed
as classifiers even if at first appearances it does not appear to be the case. Classi-
fiers have applications in making disease predictions, image recognition, giving
legal advice, and many more. Classification is one of the most important appli-
cations of ANNs. In this section, the rudiments of ANN classifiers are motivated
and presented. An ANN trained as a classifier is also known as a classifying neural
network (CNN). More commonly, CNN means convolutional neural network (see
Chapter 6). The context usually determines which one is meant.

Thus far, the ANNs have been computing continuous functions. The ANN has
produced a smooth curve. Simple scaler functions were learnt so the curves were
easily plotted (see Figure 2.3). These were simple examples of regressing on sine
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data. Classification is a different problem. Given a vector for input a, classifying
ANN must predict which class from a finite and mutually exclusive set of classes
the example belongs. The output is not a number. It is the category to which the
example belongs. This is an extremely powerful construction. An example is a dia-
betes classifier. Given a patient’s data, the ANN will make a diagnosis, one of either
{Healthy, Diabetes}. Image recognition is also a classifier. For example, a clas-
sifier might accept a JPEG image and classify it as one of either a dog or a cat, or
even enumerate all of the objects that the image contains.

Note that any object, such as a JPEG, can be flattened into a vector. For example,
in the case of a two-dimensional black and white image, laying each row out
sequentially in memory produces a vector. Indeed, copying is usually not even
required; that is, how images are frequently represented physically in computer
memory. The transformation can remain abstract, and the area of memory
containing the item is simply reinterpreted.

There can be a choice of how to frame a problem, as a regressor or a classifier. For
example, an ANN regressor might predict a stock price. By comparing the current
stock price with the predicted stock price, an analyst can make a recommendation
of either {Buy, Sell, Hold}. Alternatively, the ANN could simply be trained to
make the recommendation in the first place by building a classifier instead of a
regressor. In this case, the ANN’s output would be the recommendation, not a
number (the predicted stock price). Examples of both approaches can be found
here (123).

ANN classifiers compute predictions very similarly to regressors. They differ
in one important respect: the output. The input layer and the hidden layers are
the same, but the final output is treated differently. Classifiers need to perform
an extra step to produce their final prediction. The sine regressor is a mapping,
ANN ∶ ℝ → ℝ; its input and output are continuous. The range of a classifier is cat-
egorical. Classifiers look like, ANN ∶ ℝd → 𝕂, where 𝕂 is the set of categories. An
example of 𝕂 is 𝕂 = {dog, cat}. This set must be represented mathematically so
that the classifier can compute with it. The first step in constructing a classifier is
to identify a strategy for dealing with the set 𝕂 mathematically. The remainder of
this section examines how categorical variables are handled. The special case of
binary classification is dealt with first. A binary classifier has only two categories
to choose between.

2.4.1 Binary Classification

A binary classifier is the simplest form of classification. There are only two possi-
ble outcomes, and it forms an important special case. A diabetes classifier is an
example of a binary classifier, there are only two classes in the set of outputs.
The set 𝕂 comprises of the two valid choices {Healthy, Diabetes}. A natural
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Figure 2.6 A binary diabetes classifier. The predictors are continuous, but the output is
categorical. The grid depicts the decision boundary for a single patient but plotted for
glucose and insulin levels. A Black square is a prediction for diabetes and gray is healthy.

course to pursue would be to adapt a regressor to classification by imposing an
interpretation on the output. As there are only two classes, then the convention
might be that the class Diabetes is 0 and the class Healthy is 1. This is a regressor
masquerading as a classifier, that is, its output is continuous and not categorical.
The trouble is that an ANN is unlikely to produce such tidy results every time.
Results such as 0.99 and 0.5 are exceedingly likely. With a further refinement this
could be made practicable by adopting the convention of rounding the result to
one of either 0 or 1. This does work.

Figure 2.6 shows the decision boundary of a binary classifier for diabetes classi-
fier trained with an open source dataset.1 The patients in the dataset have 8 diag-
nostic predictors (so x is an 8-tuple) and the correct label, healthy, or diabetic. The 8
predictors are continuous, but the result is categorical. This classifier has the form,
ANN ∶ ℝ8 → 𝕂. The ANN was trained with the topology {20, 20, 1}. Principle com-
ponent analysis (PCA) revealed that the most important predictors in the dataset
were found to be glucose and insulin levels. The patient shown in Figure 2.6 was

1 Released by the National Institute of Diabetes and Digestive and Kidney Diseases.
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selected randomly from the training set. Six of the patient’s predictors were kept
constant, while the glucose and insulin values were iterated over to produce the
plot. This results in a graphical projection of the decision boundary with respect
to insulin and glucose. It is clearly more complex than a simple line. In the full
8-dimensional space, the structure is very complicated. The power of deep learn-
ing lies in its ability to find decision boundaries in highly complex feature spaces.
Note that graphing a classifier is very different from a regressor. This is a binary
outcome so color can capture the results.

2.4.2 One-Hot Encoding

Many classifiers have more than two possible categories. Clearly, a binary classifier
is not sufficient for those applications and a means of supporting more than two
outcomes is required. A classifier needs to select a particular class from a finite
set of classes in its range; it is discrete. Binary classification suggests itself as a
natural starting point. The idea can be extended by assigning an integer to each
class, starting at zero and increasing by one for each unique class. This would result
in 𝕂 = { dog = 0, cat = 1, giraffe = 2, gorilla = 3}. The method could
be construed as function, f ∶ ℝd → ℕ0, the range being the natural numbers, and
implemented with a single output neuron. In practice, this does not work well.
With further refinement, it forms the basis of a useful approach.

A efficient approach is to elaborate the idea of per class labels to produce a
computationally feasible range. The categories have integers assigned as described
above, but instead of a single output neuron each class has a dedicated output neu-
ron. Let K = ∣ 𝕂 ∣, the number of classes. Then the output layer of the ANN has K
neurons. The integer identifiers for the classes are interpreted as their indices in
the output layer. Thus, in the Diabetes/Healthy example, the final layer consists
of Diabetes, neuron 0, and Healthy is neuron 1. The convention yields a model
with domain and range: ANN ∶ ℝ8 → ℝ2, and in general ANN ∶ ℝd → ℝK . While
the output is a vector of continuous values, the information is delineated in a per
class neuron. Each neuron can be treated in isolation.

The proposed topological practice suggests a means of expressing a datum’s
class: a vector. Consider the problem of classifying a genus of flower, the
iris: 𝕂={setosa=0, versicolor=1, virginica=2}. Then K = 3. The iris
“versicolor” would be represented as a vector, [ 0, 1, 0 ]. The class of a
datum is represented as having a 1 at the class’ index and zeros in every
other position. Representing classes in this fashion is known as one-hot
encoding. An example ANN classifier for an iris is presented in Figure 2.7.
One-hot encoding assumes membership of one class is mutually exclu-
sive with membership in another class, that is, an example can only be a
member of a single class. This is known as the single label classification problem.
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Sepal.length

Sepal.width
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versicolor

virginica

Softmax

Petal.length
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[0.001,
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  0.997]

Figure 2.7 A trained classier for the Iris dataset. There are 4 predictors and 3 classes.
Each class has an output. The outputs are used by the softmax function to make a
prediction. In this example, virginica is the predicted class.

Problems where an example can be a member of more than one class simultane-
ously are called multilabel problems, and one-hot encoding is not appropriate.
The multilabel problem is framed differently. See Section 4.3 for details.

Categorical features are one-hot encoded vectors. A vector representing a cate-
gory is populated entirely with zeros except for the position corresponding to the
class of x, which will contain a 1. This can remain abstract. The one-hot encoded
vector can, in turn, be encoded simply with the index of the 1 in the vector, for
example, [0, 0, 1] is summarized as 2 – the index of the 1. A one-hot encoded vec-
tor is discrete, so it is a mass function, not a density function, which is continuous,
so the representation is accurate. For applications with many categories, this can
save a great deal of memory and copying.

The iris classifier was built with a famous dataset2 introduced by Ronald Fisher
in 1936 (117), a father of modern statistics and inventor of likelihood (116). Known
as the iris dataset, it is frequently used with introductions to machine learning.
It has 4 continuous predictors and 3 classes; so the classifier looks like, ANN ∶
ℝ4 → ℝ3. Note the difference between this example and the sine ANN. There are
3 classes so we have 3 output neurons, not the 1 continuous output neuron of

2 It is also sometimes referred to as Anderson’s Iris Data Set as Edgar Anderson collected
the data.
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the regression ANN, or the binary classifier. While the number of predictors hap-
pens to correspond with the number of input neurons this is by no means required
(see the sine example above). As it is a dense ANN, we can write the topology as
𝜏 = { 4, 4, 3 }. The ANN has a depth of 3, and there is one hidden layer comprises
4 neurons.

2.4.3 The Softmax Layer

An ANN classifier has K output neurons; therefore, the ANN will produce a value
in each of the K output neurons. There still remains the question of which class
the ANN selected; the output will often not be purely one-hot encoded. The K
output neurons can produce any value. Ideally, we would have an interpretable
means of selecting which output neuron to believe. One means of deciding is to
construe the output of the ANN as a probability distribution, then interpreting
the ANN’s output is as simple as accepting the class with the highest probability.
This method is also compatible with the representation of the ground truth, the
one-hot encoded vectors. To that end, a softmax layer is appended to the output of
a classifier ANN (44).

A softmax layer accepts the vector of the output responses from the ANN and
processes them to produce a set of “probabilities.” The raw output of the ANN is
knows as logits. softmax processes logit to produce a probability distribution over
the possible classes. The probability of the class is computed as

p̂j = softmax(z) = ezj∑K
k ezk

, (2.11)

where z is the output vector of the ANN, the logits. It computes the probability for
the class, j. The denominator is the sum over all the responses and thus normalizes
each entry of the output vector. To make the final prediction the ANN needs all the
probabilities. The vector of all the probabilities, is p̂, so p̂= softmax(z).

The softmax function has a number of desirable properties. The result looks like
a probability distribution. Its output vector sums to 1, and all the entries have the
property, 0 ≤ p̂j ≤ 1.0 for jth entry of p̂. Making a final prediction is now straight
forward. The ANN selects the class with the highest probability. The index of the
entry with the highest probability in p̂ is the ANN’s predicted class.

The softmax function imposes order on the potential chaos of the ANN’s output
neurons. Softmax is occasionally referred to as an activation function because it
replaces the usual activations in the output layer of the ANN, but it is more like a
distinct layer. No one output probability can be computed without all of the output
signals, so it is dense. This property seems more like a fully-connected layer than
an activation function.

There are two potential numerical pitfalls to avoid when using softmax. The first
is a division by zero, and the second is overflow. The sum can become enormous
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if the logits are large and positive. This is particularly likely at the beginning of
training an ANN. It is a good idea to subtract the largest logit from every element in
the logits vector (z). Translating the logits by the maximum zj achieves two things.
The first is that at least one of the zj will be zero, which means one term in the
denominator’s sum will be 1.0, obviating a division by zero. The second is that the
remaining terms will be negative and so the sum cannot overflow. Underflow and
catastrophic cancelation are not a problem. The class with the maximum value
will produce a 1.0 by construction. The 1 dominates the sum so that class, j, is the
most probable (and the softmax will look like a one-hot encoded vector).

Armed with softmax an algorithm for an ANN classifier can be described
Algorithm 2.2.

Algorithm 2.2 ANN Classifier
1: procedure CLASSIFY(x)
2: logits ← 𝖠𝖭𝖭(x)
3: p̂ ← 𝗌𝗈𝖿𝗍𝗆𝖺𝗑(logits)
4: argmax

index
p̂index ⊳ index of highest probability is the predicted class

5: return index
6: end procedure

We conclude with a brief numerical example. Let x = (5.6, 2.8, 4.9, 2), an example
from the iris dataset. Then the classifier computes as follows:

1. z = ANN (x) = (−2.1, 5.2, −1)
2. p̂ = softmax ((−2.1,−1, 5.2)) = (0.0006737164, 0.002023956, 0.9973023)
3. max (p̂) = 0.9973023
4. the index is 2
5. the predicted class is 𝕂[2] : virginica

All the steps can be carried out inside a model. The application would be obliv-
ious to the individual steps. The model should simply accept the predictors and
return the predicted class to the application.

2.5 Summary

ANNs can be viewed as graphs. The graphs can be defined as a list of widths of
its layers. Layers consist of perceptrons that compute state by evaluating the dot
product of its weights with the input signal and finish with an activation func-
tion. The activation functions introduce nonlinearity. The entire computation can
be expressed with a series of iterative matrix multiplications. Two types of ANNs
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have been introduced, regressors, and classifiers. Regressors and classifiers differ
in that classifiers are categorical. Classifiers use softmax to map the ANN’s logits
to a synthetic probability distribution over the categories.

2.6 Projects

1. Implement Algorithm 2.1 in your favorite computer language. Use the weights
in the sine and cosine examples to test it.

2. Measure the time taken to perform a matrix vector multiplication. Plot a graph
for the time taken as a function of the N, the number rows in a square matrix.
What is the relationship?

3. The binary classifier example in Section 2.4.1 was implemented with a regres-
sor and the sigmoid activation. The outcomes equally shared the space [0, 1].
What would have to change to accommodate the other two activation functions
presented in the chapter?
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3

Training Neural Networks

In Chapter 2 it was shown how ANNs compute values and perform the tasks of
regression and classification. In this chapter, we will learn how ANNs are created.
ANNs depend on good values for weights to produce accurate results. Creating
an ANN is the process of constructing a graph and then finding the appropriate
weights. The latter task is accomplished by training the ANN, the topic of this
chapter.

There are two stages in the life-cycle of an ANN. The stages are training and
inference. Inference formed the subject of Chapter 2, it is the application of the
ANN – the trained model; it has appropriate weights and is ready to be used to
make predictions on data that is has never seen before. Inference is the second
stage of the life-cycle. The first stage is training. A model cannot be used until is
has been trained. The raw clay of the function, a graph with bad weights, must be
molded to fit the constraints of the problem’s defining dataset. There are multiple
steps in the course of training and accepting a model, and they will be introduced
to produce a working training framework.

ANNs are defined by their weights. The values of the weights determine the
behavior of an ANN. The weights are found during the process of training the
ANN. Training an ANN requires a dataset. The dataset is used to train the ANN
so it is called the training set. The ANN “learns” from the training set. Training an
ANN consists of fitting weights to the ANN such that the ANN emits the desired
values with respect to the training set. During training, the weights of the ANN are
reconciled with the training data. The correctness of the ANN is measured against
the training set. In this sense, the model (ANN) is “fitted” to the data. This is an
example of supervised learning (105) because the dataset must also include the
answer, also known as the ground truth or labels, so that the ANN’s result can be
verified and its accuracy quantified. The error is used to correct the ANN. Once
the error is sufficiently low, the training is said to have converged. Convergence
will be clarified below.

Demystifying Deep Learning: An Introduction to the Mathematics of Neural Networks,
First Edition. Douglas J. Santry.
© 2024 The Institute of Electrical and Electronics
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3.1 Preparing the Training Set: Data Preprocessing

ANNs learn from experience; they get better over time. The experience comes from
exposure to the training set. Training requires good data to constrain the ANN.
The training set is presented repeatedly to the ANN until is has learnt its lesson
sufficiently well. Clearly, the quality of the data is critical: garbage in, garbage out.
Taking a little care at the beginning of the process will go a long way to improv-
ing results and reducing training time (the number of training cycles required for
convergence).

Prior to training the data typically needs to be preprocessed. There are many
sources of data, and it can take many forms. The data could be jpeg images, natu-
ral language text, or the results of instrument readings. Whatever the source and
form of the data, it must put into a useable state for training. Preprocessing the
data leads to better behaved dynamics in the model and faster convergence. ANNs
are sensitive to the values in a training set. To increase our chances of successful
training, we require numerical stability and control over inputs. Preprocessing is
means of achieving all of those goals. There are a number of points that need to be
considered.

Recall that ANNs compute their values with multiple matrix multiplications and
activation functions. Matrix multiplications are linear transformations that scale
and rotate their arguments, and it is important that the transformations behave
well. It is undesirable to use weights that cause the arguments to explode or dis-
appear. Activation functions are interesting between −1 and 1. The final state of
a neuron is the activation function applied to a neuron’s dot product of weights
and inputs, u. A neuron whose weights uniformly produce strongly asymptotic
behavior in the activation function (e.g. −1 or 1 for the tanh) are not contributing
to the inference. The weights of such a neuron are known as saturated. Saturated
neurons are not helpful. To keep the activation functions interesting, u should be
within the unsaturated domain of the activation functions.

It is also important to ensure that predictors have the correct relative influence
on the dot products at the input layer. Consider a dataset with two predictors with
means that are orders of magnitude apart. For example, half-lives of radioactive
material measured in 100s years and masses measured in 10−5 kg. There is a differ-
ence of 7 orders of magnitude between the features. Even if the mass is the more
important feature, it will be dominated by the enormous values of the half-lives.
Moreover, if the half-lives are converted from years to seconds a completely
different model will be obtained (and probably even less useful). What we really
want to capture is the distribution of a feature. Of interest are the relationships
between the individual features. The choice of units should not matter, nor
should the relative scale of the features. The chances of saturating the activations
functions is very high indeed if large numbers are used in the input training set.
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Ideally the data will make it easy for the scaler products to produce values within
the interesting domains of the activations functions. To make that more likely, two
basic steps of preprocessing are adopted: they are translation and scaling. Both
steps are performed on a per feature basis. These steps are only performed on
numerical features. Translation should ensure that the input data starts centered
on the center of interesting activation dynamics, and scaling ensures that the input
data does not stray outside the interesting activation domain.

Typically, features are centered at 0.0. The first step is to translate the mean of
the distribution of the features to zero. This is done by computing the per feature
mean and then subtracting it element-wise from the feature. Each feature is treated
separately. Iterating over the features, the mean is computed and then subtracted
element-wise. The effect of this translation is that the distribution of every feature
is now centered about zero, that is, has a mean of 0.0.

The second step is to “normalize” the data. Normalization of the data is effected
by scaling it with an appropriate per-feature scaler value. There are a number of
ways of selecting an appropriate scaler. One way it is to compute the max (|xi|) of
a feature and then dividing every element of said feature with the maximum. This
produces values in the feature that are −1 ≤ xi ≤ 1.

Z-scoring is another way to normalize a numerical feature. The standard devia-
tion of the feature is computed and then every element is divided by it. This results
in each element of a feature being the count of the number of standard deviations
that it is away from the mean, which is zero by construction. Z-scoring is usually
preferable to scaling by the maximum.

Normalization is the process of scaling the data to make it more amenable to the
linear transformation that multiplication by the weights matrix effects. Scaling
with either the maximum or standard deviation preserves the relationships
between the data. Moreover, it would appear at first glance that the compact
domain produced by scaling with the maximum is superior. This begs the
question, why is Z-scoring recommended? The answer lies in the application of
the ANN. Training produces a model that has learnt the data, but applications
are usually interested in performing inference with data that the model has
never seen before. Training with the narrow domain [−1, 1] can produce a model
that is not good at dealing with unseen data. The problem is the special nature
of multiplication in that domain. Numbers in that subset grow smaller with
multiplication, which is the opposite with values outside the subset, which grow
larger. During training the weights will specialize for the former case. Unseen
data, even after pre-processing, may fall outside the subset [−1, 1]. The values
will grow larger with multiplication, that is, behave completely differently than
training data. This effect can produce poor predictions. Z-scoring produces a
compact normalized training set while handling unseen data better. This is
because the model was trained with data outside [−1, 1], and the weights will not
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have specialized to the exclusion of values outside that subset; the model will be
more robust. Handling unseen data is usually the most important consideration.

Recalling the discussion of activation functions in Section 2.2.1, three particu-
larly important activation functions were proposed. There are many more possibil-
ities, but those selected are important as an introduction to the trade-offs attendant
to selecting an activation function. The range of tanh and sigmoid are very similar.
It may not be clear why both are used. Some rules of thumb can now be suggested.
The sigmoid function has a range of [0, 1]. Observe that half of the sigmoid’s inter-
esting domain is not in its range. ANNs are stacks of layers, the output of one layer
acting as the input for the next. The sigmoid produces output that the deeper layer
will have to translate to make full use of its sigmoid’s domain. This makes it harder
to train. The tanh should be preferred as it has a range of [−1, 1]; it is centered. The
tanhwas introduced as an activation function once the dynamics of training ANNs
was better understood. sigmoid is used when the interpretation of the output is
a probability. This is not uncommon so the sigmoid still occupies an important
niche. Finally, observe that preprocessing ensures that the training set is in the
interesting area of the activation functions’ domains. Starting the ANN’s compu-
tation with sympathetic input speeds up training and produces better results.

Data preprocessing needs to be incorporated seamlessly into a model’s workflow.
There are two choices of when to do it when training. One choice is to perform all
preprocessing a priori in a batch. As described above, the means are calculated,
the data translated and normalization performed on a copy of the dataset; it never
needs to be done again in the course of training. Another option is to compute
the per feature means and scaling factors then incorporate them as an ante-layer
in the ANN directly. When arguments arrive at the ante-layer, they are processed
prior to passing them on to the first dense layer of the ANN. The arrangement is
depicted in Figure 3.1. Both methods are correct and the choice is a trade-off, but
the latter is often chosen. There are a number of reasons for this recommendation.

First, once the model is trained and ready to be deployed, then data used for
inference will also need to be preprocessed. To ensure correctness, the para-
meters used for preprocessing of the training set will have to be retained for use
with the application, even if batch preprocessing was employed. Incorporating
the preprocessing as a layer in the ANN obviates a whole class of bugs where
ANNs are invoked with unprocessed arguments. The second reason is a question
of resources. It is a terrible idea to modify training data, it should always be kept as
a record. Preprocessing the training data batch style requires creating a copy, and
this can be prohibitive. The one seeming advantage of batch preprocessing prior to
training is that it is only done once. The ante-layer ANN may seem wasteful, doing
the same thing to the same data over and over again each training epoch, but
compared with the computation of computing the ANN’s value, and the weight
updates, it is really just noise. Relative to the expense of training, preprocessing
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Figure 3.1 An ANN with a preprocessing layer. The preprocessing nodes are in the first
layer. The translation and scaling are performed on a per feature basis. The data are
passed directly to the ANN from the training set unmodified. Training a preprocessing
layer consists of learning the per-feature means and standard deviations.

examples multiple times by incorporating an ante-ANN preprocessing layer is
not as onerous as it might seem. The advantages far out-weigh the drawbacks.
The ante-layer is “trained” by computing the per feature means and standard
deviations and storing them in the layer.

3.2 Weight Initialization

Before the weights of an ANN can be trained, they will need to be initialized.
Intuitively it might seem that initializing the weights to zero is indicated. It is a
common starting value in many algorithms and data structures, but it does not
work when training ANNs. What is important is ensuring that all weights in a
layer start with different values. Zero is not necessarily precluded, but only one
weight in a layer should be initialized with zero. The initial values need to be dif-
ferent to ensure that they evolve in different directions during training. Consider a
layer in an ANN. All the neurons receive the same input. If every neuron had the
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same weights they would all give the same answer, which is pointless. The point of
having multiple neurons is to increase the capacity of a layer to learn; the weights
need to be different to so that all of the neurons can contribute.

The neurons not only need to be different, but ideally they should be in a certain
range. The ranges of activation functions are most interesting in certain subsets of
their domains. The internal scaler product of a neuron, u, should be, −1 ≤ u ≤ 1.
This suggests that the weights should be initialized thus: w ∼ U[−1, 1], where U
is the uniform distribution. While this might be appropriate it turns that we can
do better. The magnitude of the scaler product will also depend on the number of
source neurons – the more there are, the greater the magnitude of u. Glorot and
Bengio (48) suggest that it is important to ensure that the variance of the weights
is high. High variance ensures that the weights are widely dispersed and con-
tributing, not overlapping. The following is their proposed method for initializing
weights:

w ∼ U

[
−

√
6√

Min + Mout

,

√
6√

Min + Mout

]
, (3.1)

where the Ms denotes the numbers of the neurons in the surrounding layers.
Equation (3.1) is known is known as Glorot initialization. The formulation
accounts for the number of weights in the surrounding layers by shrinking the
centered subset appropriately.

It is also very common to sample the initial values for weights from a Gaussian
distribution. Many deep ANNs employ this technique. The method’s use in Deep
Learning seems to have emanated from its use in AlexNET (89), a very success-
ful system that broke accuracy records at the time. The successful use of Gaussian
initialization has not been explained, but it is widespread (62). AlexNET also intro-
duced ReLU as an activation function for Deep Learning, which has a very different
dynamic domain. The latter point may explain the success of the method. More
advanced methods of initialization exist, such as orthogonalization (71), but Glo-
rot is the most commonly implemented.

And a final implementation note. ANNs do not have unique solutions. The
solution depends entirely on the weight initializations, which are random. The
weights do not converge to some unique combination. If determinism is required,
for example, when debugging, control of the order of initialization and the seeding
of the pseudo-random number generator is required. When developing libraries,
it is a good idea to print out the seed for the random number generator before
running any code. If a problem is observed in the run, then it can be reproduced.
Rare bugs are very difficult to fix if there is no means of reproducing them reliably.
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3.3 Training Outline

ANNs are trained with example data; the training set. Unlike the historical method
of solving for functions, ANNs are empirically constrained functions. We do not
define the desired function with a law of nature such as an energy or a conserva-
tion of mass constraint, we specify the function directly with data by example. The
data defines the function, that is, the desired behavior of the ANN. The real func-
tion is unknown. The ANN is an approximation to the unknown function, that is,
ANN ≡ f̂ ≃ f .

The model is defined by its training set, the data that empirically constrains how
the ANN should behave. The training set might consist of a set of photographs and
labels if it is a classifier, or a set of vectors and continuous outputs if it is a regressor.
In both cases, there is a set tuples that consists of the inputs, that is, predictors, xi.
The data also includes the correct output, yi, the desired response. This is also
known as the ground truth. Datasets that include the correct answers are known
as labeled data. It is the requirement for the inclusion of the answers in the dataset
that makes this an example of supervised learning. Without the answers we do not
know if the training is proceeding well or needs to be adjusted.

Given the training set, the role of training is to reconcile the weights of the model
with the data, that is, to fit the weights to the model; thus, a synonym for train-
ing is fitting. Fitting a model consists of presenting the training data to the ANN
repeatedly until the desired behavior is observed. The examples comprising the
training set define the correct behavior. Elements from the training set are pre-
sented to the ANN until it “learns” the data. The process of fitting a model consists
of a sequence of distinct and discrete training epochs where the training data are
presented to the ANN, errors are computed and the weights are updated (and,
hopefully, improved). But what does learn mean? How do we know when training
is completed?

Fitting the model is driven by globally optimizing an objective function over
the training set. By global we mean over the entire training set. ANN objective
functions are generally minimized. Let ŷ = ANN(x), the ANN’s response, and x an
example from the training set. Then the general form of the problem is

GOFt = 1
N

N∑
i

Loss(ŷt
i , yi), (3.2)

at epoch t, and where there are N elements in the training set. The global objec-
tive function (GOF) is a sum of the per training example loss functions. Training
an ANN is the act of finding the weights that minimize the objective function.
The local per example loss function quantifies the accuracy of the ANN and must
be differentiable. The ANN’s result in the local loss function, ŷt

i , is superscripted
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to denote that the output changes every epoch (as it learns and improves). The
ground truth never changes.

Computing the current value of the GOF constitutes the basis of a training
epoch. To compute the global loss, we need to run through the training set and
compute the per training example losses. At the end of the epoch, the weights are
updated to new values based on the results of computing the objective function.
The updated weights should improve the global loss function.

Training terminates when the objective function converges. What this means
varies between loss functions. The objective functions used in this book have a
minimum of zero. It is, however, common practice to terminate earlier than that.
A sufficiently small threshold for the objective function can be specified below
which the model is accepted. The threshold is determined by the tolerances of the
application. This question is examined more closely below as loss functions are
introduced.

The convergence of the objective function is the gauge of training progress.
At the end of training, the ANN should have weights that minimize the GOF. The
outline of the process is presented in Algorithm 3.1.

Algorithm 3.1 Training an ANN with a Global Objective Function
1: procedure TRAIN(𝜖threshold)
2: GOF ← +∞
3: while GOF > 𝜖threshold do
4: GOF ← 0.0
5: for x, y ∈ Training Set do
6: GOF ← GOF + ComputeLoss(x, y)
7: end for
8: GOF ← GOF ÷ N
9: UpdateWeights ()

10: end while
11: end procedure

Each iteration of the while loop constitutes a training epoch. All the elements
of the training set are evaluated, and the current value of the objective function
is computed. Once the individual losses have been calculated, the weights are
updated. When the objective function is sufficiently small the algorithm termi-
nates. At this point, training is said to have converged. This form of training is
called batch training because every epoch uses the entire dataset; it is processed
as a batch.
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In summary, training consists of a number of discrete steps, called epochs, where
the ANN is used to compute a per training datum loss. A GOF summarizes the
individual losses to produce a global loss value. Training continues until the objec-
tive function falls below the required tolerance. The weights are updated at the end
of each epoch, and the solution is improved.

3.4 Least Squares: A Trivial Example

Before we present the training of ANNs, it is instructive to briefly examine a trivial
example of training a model with a dataset. The exercise will motivate the actual
technique. Consider a model with a single layer and the identity activation func-
tion, then ANN(x) = Wx (this is a neural matrix so the bias is the first column). Let
us examine the properties of a linear ANN.

Training a neural network is the task of finding the weights for the matrix, W ,
that reconciles the ANN output with the training set examples. Consider the prob-
lem of training the ANN to learn the trigonometric sine function. The first step is
to obtain a training set. The training set consists of a set of tuples with the input
arguments and the expected answer. The following training set would be appropri-
ate: {(x1, y1 = sin(x1)),… , (xN , yN = sin(xN ))}, a list of angles in radians and their
sine.

One solution that suggests itself is to minimize the error with the classic least
squares: min ∣ Xw − y∣2. The standard least squares solution is to employ the
matrix QR1 decomposition, X = QR. This yields the solution, Rw = QTy. The
solution for an example sine training set is depicted in Figure 3.2. It is clear from
visual inspection that it is not a good fit. The solution produced a line that did
indeed minimize the error with respect to the cost metric, but sine is nonlinear.
The errors are still far too high for the model to be useful. We can see the role of
the bias term in this trivial example. If the y-intercept had to be zero the fit would
be even worse. But even with the bias translation, it is clear that a single layer of
linear neurons is simply incapable of learning sine. This begs the question, can
the solution be improved by making the network deeper?

A deeper model can be created by employing h layers, W1,W2,… ,Wh. The trou-
ble is that the h matrices convolve to a single matrix: W1 ⋅ W2 ⋅ Wh = Wc = a single
matrix; a linear transformation. No matter how many layers are added, they are
mathematically isomorphic to a single layer weighted with the convolved matrix,
Wc (though computing the convolved matrix with IEEE arithmetic may produce

1 See Appendix A for a review of QR.
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Figure 3.2 The fit of a least squares solution to a random sample of points and their
sine. The training set is plotted as points. The results of the computed model are plotted
as crosses. The slope is negative because there are more points in the training set on the
right side of the curve.

a different result). This can be used to model lines, planes, and hyperplanes, but
most interesting problems are extremely nonlinear. It is precisely this nonlinearity
that Minksy and Papert used to argue that ANNs were a research dead end (131).
Early learning rules were mostly variants of least squares. An improvement can be
made by treating the dataset piecewise and dividing the dataset into ranges, but
this presents its own problems and remains unsatisfactory.

To learn nonlinear relations requires the introduction of nonlinearity. ANNs
get their nonlinearity from activation functions. That is the role of the activation
function: they bend the decision boundary around subsets that are not linearly sep-
arable. An example is depicted in Figure 3.3. The problem on the right is linearly
separable, and least squares is capable of learning it. The problem on the left has a
more complex decision boundary. It is not linearly separable. The problem on the
left requires more elaborate mechanisms for a satisfactory model. The nonlinear
activation functions make possible learning nonlinear decision boundaries.

While the nonlinear models are very successful at dealing with nonlinear prob-
lems, they lack interpretability. Least squares results in a solution that can be easily
interpreted as a relationship. A trained ANN is a black box. It may make predic-
tions very well, but they usually do not admit of interpretation making it difficult
to draw broad conclusions.
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Figure 3.3 The decision boundaries for two classification problems. The example
depicted in subfigure (b) features two classes that are neatly separated by a straight line;
it is linearly separable. The classification problem presented in subfigure (b) is far more
complicated. Its two classes cannot be differentiated with the superposition of linear
boundaries.

3.5 Backpropagation of Error for Regression

To handle nonlinear decision boundaries, ANNs must be nonlinear. To that end,
a nonlinear learning process was developed in 1986 (34), called backpropagation
of error. It remains the basis of training ANNs down to this day. In this section we
present how modern ANNs are trained.

It has been shown in Chapter 2 how a feed-forward ANN computes values by
accepting an input and then propagating the signal, layer by layer, through the net-
work. The answer pops out of the last layer. When training an ANN, the local loss
function computes the per-example error with the ANN’s result. The error is used
to improve the network. Starting with the error computed with the result and the
ground truth, a correction is calculated. The correction is pushed in the reverse
direction backward through the graph. As will be seen, the error signal is the
gradient on the loss function surface. This section describes the resulting method.

Continuing with the sine example, a topology for its graph is required. The
topology of the graph in Figure 3.4 is {3, 2, 1}. This is the graph that will be
used in the derivation. The model will use the sigmoid activation function.
The nonlinearity introduced will improve the solution when compared to the
least-squares model. This topology will not produce an accurate model of sine,
more neurons are needed, but its simplicity will make the presentation of the
concepts clear in what follows below. This model’s topology is sufficiently simple
that layers can be clearly labeled. The layers are named, {input, hidden,

output}. As there is a hidden layer, this is a Deep Learning model (but trivial).
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Figure 3.4 A trained ANN model that has learnt the sine function. The layers are labeled.

At the start of the first epoch of training, the first example is presented to the
untrained model. From the input layer, the signal propagates through the net-
work, and as the weights are initialized randomly, we can expect nonsense in the
output neuron. To progress further, there are two immediate requirements. We
need a means of measuring the accuracy of the ANN’s answer, or how “wrong”
it is, and the means must be quantitative and differentiable. There must also be
a mechanism for using this information to update the weights and thus improve
the solution. We address ourselves to meeting these requirements in the rest of the
section. The starting point is the GOF:

GOFt = 1
N

N∑
i

Loss(ŷt
i , yi). (3.3)

The work of a training epoch is computing the individual loss terms. When train-
ing an example is selected from the training set, (xi, yi = sin(xi)), and compute
ŷi = ANN(xi). Now, almost certainly, we will have ŷi ≠ yi. A loss function will deter-
mine the quality, or lack thereof, of ŷ. For regression, the standard measure is the
squared error loss function:

Loss = 1
2
(y − ŷ)2, (3.4)
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where y is the ground truth and ŷ is the response of the ANN. The squared error
loss function punishes large differences and forgives smaller differences. As the
difference is squared the result is always positive, which makes it useful in a sum.

Returning to the objective function, it can now be defined more precisely for
regression. To measure the quality of the fit for the entire training set, we employ
the mean squared error (MSE). The MSE is the objective function for regression.
The global loss function is the mean of all the errors of all the examples from the
training set:

GOFt = MSEt = 1
N

N∑
i

1
2
(yi − ŷt

i)
2. (3.5)

As the MSE → 0 the accuracy of the model is improving, that is, converging. In prac-
tice it is rarely exactly zero. A nonzero threshold is specified below which the fit
can be tolerated. When the loss of the ANN falls below the threshold the train-
ing process is halted and the model is ready for use. The threshold is left to the
application to select.

Having computed a response with an example from the training set the loss, the
metric for (in)accuracy, is calculated. The loss needs to be used to improve the
accuracy of the ANN so that the ANN can learn from its experience (exposure to
an example from the training set). Recall that the object of fitting a model to a
training set is to look for the appropriate weights for the ANN. It is now clear what
that means: we want values for the weights that reduce the MSE. An update for
the weights is required at epoch, t, such that,

wt = wt−1 + Δwt, (3.6)

is an improvement. The object of the training epoch is to compute the weight
updates,Δw. Ideally, the update to a weight would decrease the MSE. An update to
the weights is required that decreases the loss. To that end, the weight updates need
to be related to how the MSE is changing. In other words, we want to relate how
the loss is changing with respect to how the weights are changing. The following
equation captures the relationship:

Δw ∝ − 𝜕L
𝜕w

, (3.7)

where L is the loss function, in this case, squared error. It is negative because
this is a minimization problem. The desired direction of travel is toward minima
and away from maxima, that is, it needs to descend. If the slope is positive, that
is, increasing, we want to go in the opposite direction. If the slope is negative,
decreasing, then we simply keep going.

The canonical means of achieving this is a method known as backpropagation of
error. The backpropagation procedure computes the derivative of the loss and uses
the chain rule from the Calculus to propagate the error gradient backward through
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the ANN’s graph; this is known as the backpropagation phase or the backward pass
of training. We use a recurrence equation and dynamic programming to update
every weight in the ANN starting from the loss function.

To start, the backpropagation algorithm computes the loss with an example from
the training set. This is the forward pass as the responses go forward through the
ANN’s graph in the usual computation. With the ANN’s result, ŷ, the loss is com-
puted and then the gradient is forced backward through the ANN’s graph. This is
the backward phase.

The first step is to compute, ŷj = ANN(xj), with the jth example from the training
set. With ŷ available the loss is computed. The inceptive step of backpropagation
is the derivative of the loss. Differentiating the loss with respect to the output of
the ANN we obtain:

𝜕L
𝜕ŷ

= 𝜕

𝜕ŷ

(1
2
(y − ŷ)2

)
= −(y − ŷ). (3.8)

This is the how the loss is changing with respect to the output neuron, ŷ ≡ zoutput.
We now have 𝜕L

𝜕ŷ
, but we need to compute the 𝜕L

𝜕wi
for each weight in the ANN’s

graph. The backpropagation algorithm is a means of doing just that. To start we
will compute the update for the weights of the terminal layer, the output layer.

3.5.1 The Terminal Layer (Output)

To begin, recall that the output neuron computes its state as follows:
ŷ = 𝜎(u = Woutputzhidden), 𝜎, the activation function, is the sigmoid function
in our example. The chain rule is used to propagate the derivative to every weight
in the output layer of the ANN as follows. For each weight i in the output layer:

𝜕L
𝜕wi

= 𝜕L
𝜕ŷ

⋅
𝜕ŷ
𝜕u

⋅
𝜕u
𝜕wi

. (3.9)

The chain rule from the Calculus has been used to decompose the monolithic
problem of computing 𝜕L

𝜕wi
rendering it more tractable. There are three interme-

diate computations required to get the final result for the weight update, and they
are easy to compute. Equation (3.9) represents a path of derivatives that the gra-
dient, 𝜕L

𝜕ŷ
, must travel along through the graph to where it is needed. In the sine

example, the output neuron has 3 weights. The BPG equation (3.9) will be used 3
times, once for each of the weights, i = {0, 1, 2}.

Using Eq. (3.9), we can compute the gradient for each of our weights in the
output layer. Observe that there are 3 derivatives on the right-hand-side (RHS).
It follows that the individual derivatives on the RHS need to be computed, and
once obtained, the final derivative is calculated for the weight update. We proceed
by computing each derivative individually and then composing them to produce
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Table 3.1 Important Activation Functions

Activation Function Definition Derivative

Sigmoid function 𝜎(u) = 1
1+e−u 𝜎(1 − 𝜎)

Hyperbolic tangent (tanh) 𝜎(u) = tanh(u) 1 − 𝜎2

Rectified linear unit (ReLU) 𝜎(u) = max (0,u)

{
0 u ≤ 0
1 u > 0

the desired term in the weight update equation. We have computed 𝜕L
𝜕ŷ

, so that
leaves 𝜕ŷ

𝜕u
and 𝜕u

𝜕wi
.

Proceeding from left to right we start with, 𝜕ŷ
𝜕u

. Recall that ŷ ≡ zoutput = 𝜎(u), it is
short-hand for the terminal activation function; the final output of the neuron,
so 𝜕ŷ

𝜕u
= 𝜕𝜎

𝜕u
. As such it depends on the choice of activation function. Our ANN

employs a sigmoid activation function so we need to compute its derivative. Recall
the definition of the sigmoid function (Table 3.1):

𝜎(u) = 1
1 + e−u . (3.10)

Let v = 1 + e−u, then we can re-write the sigmoid as, 𝜎 = 1
v
, thus:

𝜕ŷ
𝜕u

= 𝜕

𝜕u

(1
v

)
= − 1

v2 ⋅
dv
du

= − 1
v2 ⋅ −e−u

= e−u

v2

= (1 − 1) + e−u

v2

= v − 1
v2

= v
v2 − 1

v2

= 1
v

(v
v
− 1

v

)
= 𝜎(1 − 𝜎). (3.11)

Recalling that ŷ is a synonym for 𝜎(u) we obtain:
𝜕ŷ
𝜕u

= 𝜎(1 − 𝜎) = ŷ(1 − ŷ). (3.12)
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This is a very convenient form, we already have ŷ, and this was one of the reasons
why the sigmoid was originally so attractive. The last derivative is obtained by
differentiating the scaler product with respect to the weight in question:

𝜕u
𝜕wi

= 𝜕

𝜕wi

(∑
j

wjzj

)
= zi. (3.13)

We now have the three derivatives required for the evaluation of (BPG):
𝜕L
𝜕ŷ

= −(y − ŷ), (3.14)

𝜕ŷ
𝜕u

= ŷ(1 − ŷ), (3.15)

and
𝜕u
𝜕wi

= zi. (3.16)

Composing the individual derivatives to produce the final form results in:
𝜕L
𝜕wi

= 𝜕L
𝜕ŷ

⋅
𝜕ŷ
𝜕u

⋅
𝜕u
𝜕wi

= −(y − ŷ) ⋅ ŷ(1 − ŷ) ⋅ zi (3.17)

While there are 3 weights to update in the output layer, observe that only the last
derivative, 𝜕u

𝜕wi
, is different across all three updates, indeed, it is the only quantity

that varies. The first two derivatives (shaded) are common across all 3 updates.
This quantity is special and referred to as 𝛿. In general, when the activation is
unknown, the delta is written as

𝛿 = 𝜕L
𝜕ŷ

⋅
𝜕ŷ
𝜕u

= 𝜕L
𝜕u
. (3.18)

In our example, the activation has been specified, it is the sigmoid activation func-
tion. The the shaded factors in Eq. (3.17) comprise the delta,

𝛿 = −(y − ŷ) ⋅ ŷ(1 − ŷ). (3.19)

This is not abstract or symbolic, we have both values to hand, y is from the training
set and ŷ was computed by the ANN in the forward pass. The delta is trivially
computed. This leads to the actual weight updates.

We are now in a position to compute the updates for the weights in the output
layer for use in the following epoch:

wt+1
i = wt

i − Δwt+1
i = wt

i − 𝜂 ⋅
𝜕L
𝜕wi

= wt
i − 𝜂 ⋅ 𝛿 ⋅ zi, (3.20)

where we have introduced 𝜂, a learning rate, to scale the update. The learning rate
is there to regulate the size of the update. The three updates for the weights for the
output neuron are

wt+1
b = wt

b − Δwb = wt
b − 𝜂 ⋅

𝜕L
𝜕wb

= wt
b − 𝜂𝛿, (3.21)
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recall the bias is always 1.0.

wt+1
0 = wt

0 − Δw0 = wt
0 − 𝜂 ⋅

𝜕L
𝜕w0

= wt
0 − 𝜂𝛿 ⋅ zhidden,0, (3.22)

and finally

wt+1
1 = wt

1 − Δw1 = wt
1 − 𝜂 ⋅

𝜕L
𝜕w1

= wt
1 − 𝜂𝛿 ⋅ zhidden,1, (3.23)

where the output vector from the hidden layer has been treated like an array. The
zhidden vector forms the input for the output neuron in the feed-forward phase of
the ANN.

3.5.2 Backpropagation: The Shallower Layers

Having computed the updates for the weights for the output neuron it remains to
continue the backpropagation of the gradient to the remaining weights shallower
in the ANN graph (we continue to use the convention that the output neuron is
the deepest layer, that is, with respect to the feed-forward phase).

The inceptive step of the recurrence has been computed with 𝛿 in the output
layer. Continuing with the sine example, let us compute the weight updates for
the hidden layer. There are 2 neurons in the hidden layer, each with 4 weights.
All of the weights need to be updated so there are 8 separate weight updates to
compute. This is done by continuing to apply backpropagation.

To compute the weight update in the next layer, we need to propagate the gradi-
ent through the output layer to the hidden layer. Recall that we computed 𝛿 in the
output layer. Expanding 𝛿 in the output layer yields:

𝛿output =
𝜕L
𝜕ŷ

⋅
𝜕ŷ

𝜕uoutput
= 𝜕L
𝜕uoutput

.

This is the basis of the recurrence. We will use the deeper 𝛿output to compute
the shallower 𝛿hidden. Every neuron in the network has a 𝛿. We have seen how
to compute a weight update with a delta, thus with delta computed we know
how to compute a neuron’s weight updates. It is possible to proceed as in the out-
put layer to compute the updates for the individual weights in the hidden layer.
We need,

𝛿hidden = 𝜕L
𝜕uhidden

,

and we can compute this quantity with the 𝛿 from the output layer:

𝛿hidden = 𝜕L
𝜕uhidden

= 𝜕L
𝜕uoutput

⋅
𝜕uoutput

𝜕𝜎hidden
⋅
𝜕𝜎hidden

𝜕uhidden
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= 𝛿output ⋅
𝜕uoutput

𝜕𝜎hidden
⋅
𝜕𝜎hidden

𝜕uhidden
, (3.24)

where there are two quantities that have not yet been computed. They are 𝜕uoutput

𝜕𝜎hidden

and 𝜕𝜎hidden
𝜕uhidden

.
Note that the bias for the output layer does not play any part in the backpropa-

gation. The bias weight receives updates like all other weights in a layer but does
not contribute to further propagation of the gradient; it does not receive signals
from shallower layers in the graph, it is an input (a BPG terminus). Also bear in
mind that zhidden = 𝜎(uhidden), the sigma notation is used to emphasize that it is a
differentiable activation function.

Computing the 𝛿hidden derivative propagates the gradient between layers. Once
the delta is obtained, the weight updates are computed as they were in the output
layer. Every time the gradient is propagated back across layers, the deltas will be
computed. There are two neurons in the hidden layer so there will be two deltas.
Recall that u𝓁+1 =

∑
iz𝓁,i ⋅ wi (the scaler product in the output layer). We need to

compute the following twice, for i ∈ {0,1}:

𝜕uoutput

𝜕𝜎hidden,i
= 𝜕

𝜕zhidden,i

(neurons in hidden∑
j

zj ⋅ woutput,j

)
= woutput,i. (3.25)

The derivative is the weight on the edge from the shallower neuron to the deeper
one. At this point, a pattern is emerging with respect to the layers. The final form
of Eq. (3.24) for computing the 𝛿 for a neuron can be generalized:

𝛿𝓁 = 𝛿𝓁+1 ⋅
𝜕u𝓁+1

𝜕𝜎𝓁
⋅
𝜕𝜎𝓁

𝜕u𝓁
, (3.26)

and the general form for computing the per neuron 𝛿𝓁,i for a layer, 𝓁, and bearing
in mind that it is the shallower layer, is

𝜕u𝓁+1

𝜕𝜎𝓁,i
= 𝜕

𝜕z𝓁,i

(neurons in 𝓁∑
j

zjwj

)
= wi, (3.27)

where wi is the weight on the edge between the two neurons. We already know
how to compute the last derivative for the sigmoid activation function:

𝜕𝜎hidden

𝜕uhidden
= 𝜎(1 − 𝜎) = z(1 − z), (3.28)

where z is the neuron’s output. During training the responses for all of the neu-
rons must be retained for the backpropagation phase. During ordinary use the
responses can be discarded as soon as the deeper layer has consumed them, but
they required when training. It is this requirement for retention that is the con-
nection to dynamic programming.
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There are two neurons in the hidden layer. Each neuron has a 𝛿 so we need to
compute two of them. We can now compute the two 𝛿s that we need in the hidden
layer. The resulting 𝛿s are

𝛿hidden,0 = 𝛿output ⋅ w0 ⋅ 𝜎hidden,0 ⋅ (1 − 𝜎hidden,0), (3.29)

and

𝛿hidden,1 = 𝛿output ⋅ w1 ⋅ 𝜎hidden,1 ⋅ (1 − 𝜎hidden,1). (3.30)

With the two 𝛿hidden,i computed the weight updates for the hidden layer can be
computed as they were in the output layer.

The passage of the gradient through the output layer to the hidden layer by way
of computing the 𝛿s is general. Backpropagation pushes the gradient backward
through the network’s layers through the graph from delta to delta, updating the
weights in each layer as they are reached, and halting at dead ends (a bias or an
input layer). The gradient passes through a layer to a neuron, i, using the deeper
layer’s 𝛿 with:

𝛿𝓁,i = 𝛿𝓁+1 ⋅ wi ⋅
𝜕𝜎𝓁,i

𝜕u𝓁,i
, (3.31)

where no assumptions have been made about 𝜎.
Proceeding with the sine example, the gradient has now reached the input layer.

Notice that in this layer each input neuron is connected to the two deeper hidden
neurons. It is clear that the earlier expression for the gradient crossing layers is
too simple. Where neurons are connected to multiple deeper neurons, they need
to absorb the gradient from all of their connected deeper neurons. A neuron needs
the total derivative. The total derivative is just the sum of all the gradients passing
backward through the neuron. Hence, the following is performed for each neuron
in layer, 𝓁,

𝛿𝓁,i =
𝜕𝜎𝓁,i

𝜕u𝓁,i
⋅
𝓁+1∑

j
𝛿𝓁+1,j ⋅ wj,i, (3.32)

where wj,i is the weight on the edge connecting the two neurons (row j and column
i in the deeper layer’s W matrix). In the sine example, there are 3 neurons in the
input layer, and we know the form of 𝜕𝜎

𝜕u
because the activation function is known

(sigmoid), so we have,

𝛿input,0 = z0(1 − z0) ⋅ (w0,0 ⋅ 𝛿hidden,0 + w1,0 ⋅ 𝛿hidden,1), (3.33)

𝛿input,1 = z1(1 − z1) ⋅ (w0,1 ⋅ 𝛿hidden,0 + w1,1 ⋅ 𝛿hidden,1), (3.34)

and lastly

𝛿input,2 = z2(1 − z2) ⋅ (w0,2 ⋅ 𝛿hidden,0 + w1,2 ⋅ 𝛿hidden,1). (3.35)
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The above 3 equations can be written more concisely2 as

𝛿𝓁,i = zi(1 − zi) ⋅
𝓁+1∑

j
𝛿𝓁+1,j ⋅ wj,i. (3.36)

Once the input neurons compute their deltas the updates for their weights can be
computed by multiplying them with 𝜕ui

𝜕w
as demonstrated with the output layer.

These are the elements of the input tuple for the ANN. In the case of the input for
the sine ANN, it is the argument to the ANN, the x from the training set.

In summary, we can now see how propagating the gradient backward through
the graph is used to update all of the weights in an ANN. Backpropagation consists
of computing the weight updates for the output layer, in the course of which we
also compute the output neuron’s 𝛿. The 𝛿’s then percolate backward through the
ANN until the input layer is encountered, and the last weight updates are per-
formed. Once all of the weights in the ANN have been updated we run through
the training set again and measure the improvement. This continues until the MSE
is below the halting threshold. Because the weights are changing in the direction
that reduces the MSE, the objective function should be reduced over the repeated
training epochs. The sine example is trivial, and as presented backpropagation
may seem cumbersome, but it can be expressed more elegantly.

As with ANN computation in the forward pass, backpropagation can be
expressed more succinctly with matrices. Let 𝛿𝓁+1 be the vector of 𝛿s for layer
𝓁 + 1. Then,

𝜙𝓁 = W T
𝓁+1 ⋅ 𝛿𝓁+1, (3.37)

is the vector of total derivatives for layer 𝓁. Note that the upper-case T superscript
denotes the matrix transpose, not t, the epoch. The matrix multiplication sums the
products of the weights and the deltas on a per shallower neuron basis. To compute
the 𝛿𝓁,i one more step is required:

𝛿𝓁 =
(
𝜕𝜎i

𝜕ui

)
⊗𝜙𝓁 , (3.38)

where ⊗ is the element-wise3 vector multiplication operator. 𝛿𝓁 is the vector of
deltas for the layer. The vector on the left-hand side of the multiplication is the per
neuron 𝛿 so i ranges over all the neurons in the layer, 𝓁.

The per weight gradient for the entire layer can now be written as the outer
product:

ΔW𝓁 = 𝛿𝓁 ⋅ zT
𝓁−1, (3.39)

2 It must be emphasized, this expression is for the sine example. The shaded factor is the
specific derivative of the sigmoid activation function.
3 The Hadamard product.
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where z is the vector of the outputs of the shallower layer and thus forms the input
for the current layer. Recall that a vector times the transpose of a vector produces
a square matrix,4 not a scaler. At the input layer of the ANN z𝓁−1 is the argument
to the ANN from the training set. Finally, the weight update is

W t+1
𝓁 = W t

𝓁 − 𝜂 ⋅ ΔW t+1
𝓁 , (3.40)

where W is the matrix of weight for the layer, 𝓁. All the ingredients for an algo-
rithm are now in place.

3.5.3 The Complete Backpropagation Algorithm

Having derived the recurrence equation, we now present a coherent and complete
algorithm for backpropagation of the gradient of the loss function through the
graph of a feed-forward ANN. We define ℒ as the ordered list of the layers of our
ANN. The complete backpropagation procedure is described in Algorithm 3.2.

Algorithm 3.2 Training an ANN
1: procedure TRAIN(epsilonthreshold)
2: GOF ← +∞
3: while GOF > 𝜖threshold do
4: GOF ← 0.0
5: for x, y ∈ Training Set do
6: GOF ← GOF + ComputeLoss (x, y)
7: end for
8: GOF ← GOF ÷ N
9: UpdateWeights ()

10: end while
11: return GOF
12: end procedure

The routines, ComputeLoss and UpdateWeights in Algorithm 3.2 constitute the
kernel of a training epoch. They are presented in Algorithm 3.3. The recurrence
is initiated with the computation of the training loss for a training datum. The
resulting gradient is then pushed backward through the model’s graph. During a
training epoch, ComputeLoss is called for each element in the training set. Once all
of the examples in the training set have been processed UpdateWeights is invoked.
Thus, the ΔWs accumulate over an epoch and are applied once as the last step.
Consequently, it is the net gradient of the epoch that is used for the weight update.

4 The outer product, see Appendix A for details.



�

� �

�

62 3 Training Neural Networks

Algorithm 3.3 Routines Implementing Backpropagation of Error
1: procedure COMPUTELOSS(x, y)
2: ŷ ← 𝖠𝖭𝖭(x) ⊳ Forward pass
3: loss ← 1

2
(y − ŷ)2

4: 𝜙𝓁 ← ∇loss
5: for 𝓁 ∈ ℒ in reverse do ⊳ Backward pass
6: 𝛿𝓁 ←

(
𝜕𝜎i
𝜕ui

)
⊗𝜙𝓁

7: ΔW𝓁 ← ΔW𝓁 + 𝛿𝓁 ⋅ zT
𝓁−1 ⊳ Accumulate net gradient

8: 𝜙𝓁−1 ← W T
𝓁 ⋅ 𝛿𝓁 ⊳ Gradient for next layer

9: end for
10: return loss
11: end procedure
12: procedure UPDATEWEIGHTS

13: for 𝓁 ∈ ℒ do
14: W𝓁 ← W𝓁 − 𝜂 ⋅ ΔW𝓁

15: ΔW𝓁 ← ∅ ⊳ zero out the gradient matrix
16: end for
17: end procedure

The net gradient is used for a number of reasons. Updating the weights can be
expensive – there may millions of them. Moreover, updating them in the middle of
the epoch will affect all further iterations in the epoch. This can lead to suboptimal
and superfluous, even counterproductive, updates if care is not taken. Amortizing
the cost of a weight update over multiple loss calculations nets out contradictory
directions of travel. Netting out the gradients ensures that the update reflects the
information from the entire dataset.

In closing, we observe that Loss (ANN, x,w) is high-dimensional function. With
backpropagation we are exploring the loss function in an effort to minimize it by
descending its gradient. During training the parameters of the ANN, the weights,
wi, are variable and the training set is constant, that is, they reverse roles. Once
the model is trained the weights are constant, they are parameters, and it is the
arguments to the ANN that are variable.

3.5.4 A Word on the Rectified Linear Unit (ReLU)

The role of the activation function in an ANN is to introduce nonlinearity. If
care is not taken in selecting the activation function carefully training can be
degraded, and in the worst case, pointless. For shallow networks sigmoid and
tanh offer strong nonlinear properties and convenient derivatives. In deeper
networks, ReLU is almost exclusively the activation function of choice. The reason
is demonstrated here.
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The rationale is as follows. Recall that sigmoid is a mapping, [0, 1]. The deriva-
tive will be zero when the neuron is saturated (one of the extrema). For unsaturated
neurons, the interesting range of the function, sigmoid maps to (0, 1). Its deriva-
tive is 𝜓 = 𝜎(1 − 𝜎), thus its derivative will be even smaller. Consequently,
as the error is propagated backward through the network the gradient grows
successively fainter through each layer – and in deeper networks simply disap-
pears (the vanishing gradient problem). The desire to implement deep ANNs
led to a re-examination of activation functions. Let us examine the derivative
for the sigmoid activation. Its maximum is

d𝜓
d𝜎

= 1 − 2 ⋅ 𝜎 ⟹ 𝜎 = 1
2
. (3.41)

Thus, the maximum for the derivative is 0.25. sigmoid and its derivative are plotted
in Figure 3.5. As the error propagates backward through the network, at best, it is
scaled by a quarter in each layer:

𝛿𝓁,i = 𝛿𝓁+1 ⋅ wi ⋅
𝜕𝜎𝓁,i

𝜕u𝓁,i
≤ 𝛿𝓁+1 ⋅ wi ⋅ 0.25, (3.42)

It can be viewed as attenuating the error at a rate of 0.25depth−𝓁 . The example sine

used so far is, strictly speaking, a Deep Learning model, but in spirit it is not what
comes to mind when people think of Deep Learning. The state-of-the-art Deep
Learning models today have more than 20 layers. Training such deep networks
simply could not be done if sigmoid was used throughout.
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Figure 3.5 The sigmoid activation function plotted in black. Its derivative is
superimposed in gray. The derivative acts to attenuate the error signal between layers.
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The ReLU activation has a very different range, [0, ∞). Its derivative is either 0
or 1, a Heaviside function; consequently, the error signal can penetrate further
back up the stack of layers. Gradients flow backward unimpeded, or are stopped
dead. This is a critical property for training Deep Learning models. The more
layers in a model the more an ANN can learn. It does, however, introduce another
problem: the “dead neuron.” Should a neuron’s scaler product consistently
produce negative values it can never learn its way out of the hole; the derivative
will be zero forever. Care must be taken to ensure the trap is avoided (99). One
means is to use a slower learning rate. The slower learning rate gives neurons the
chance to avoid death. Note that while the learning rate might be lower it is still a
win as ReLU makes it possible to train deeper networks than previously possible.
For shallower networks, such as the sine example, the non-linearity of sigmoid
is a win.

3.6 Stochastic Sine

A vital tool for training ANNs is a pseudo-random number generator. Random
numbers are vital for initializing weights and computing expectations. Training
ANNs does not have a single, unique, solution. The same data used with the same
hyperparameters will result in a different trained model every time. This is the
result of the random nature of weight initialization. This can lead to trouble when
debugging, so we re-iterate, record the seed for the random number generator to
realize some determinism when debugging should it be required.

To emphasize the random nature of training the graph in Figure 3.6 depicts the
loss curve for four different training runs of the sineANN. Each loss curve is differ-
ent, that is normal. In broad terms they all behave the same way, but the individual
weights will be different. The diminishing returns of continuing to train following
the initial large reductions in error are evident. Following 10 epochs all the runs
exhibit a heavy tail of incremental improvements. The dark black model had the
highest loss and the dotted one the smallest. This was just “luck” and the nature
of random algorithms; the only difference between the runs was the seed used to
initialize the random number generator.

The progress of one solution is evident in Figure 3.7. The figure graphically por-
trays the evolution a single model over multiple training epochs. An ANN with
the topology of {3, 2, 1} was trained to learn sine. The model was trained over 125
epochs, and its output was graphed every 25 epochs. The family of curves depicts
the history of the model as it learning sine. When initialized the ANN is random,
but after 25 epochs, the straight line is obtained; this is the oldest curve in the
graph. Over time the curves move toward the solid black sine curve. The darker
the hue, the more epochs of training it has received. The model slowly moves closer
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Figure 3.6 MSE loss for four training runs of a sine ANN. They all show the same
distinctive precipitous decline followed by a very heavy tail. The topology was {3, 2, 1}.

Evolution of sine during training

0.20.0 0.4 0.6 0.8

θ

si
ne

0.
2

0.
0

0.
4

0.
6

0.
8

1.
0

1.0

Figure 3.7 The output of an ANN learning the sine function. The black curve is the
ground truth. The remaining curves demonstrate the evolution of the model as it learns.
The straight line is the initial random weights. The over time the output of the model
approaches the ground truth as the weights improve. Plots are taken every 25 epochs.
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to sine as the MSE comes down. The differences between the curves of subsequent
epochs become less pronounced over time, this is reflected in the heavy tails in the
loss graph.

3.7 Verification of a Software Implementation

The previous sections have demonstrated how to train ANNs, but we have not dis-
cussed the implementation. Implementing the backpropagation algorithm in soft-
ware libraries can be challenging as there are so many “moving parts.” Once the
code is written, and a test program runs without crashing, is the implementation
correct? Perhaps the test program even converges, the backpropagation implemen-
tation may still have one of the more pernicious errors that delays convergence and
retards accuracy.

Implementing software libraries correctly and robustly is critical. Developers
build their applications on top of libraries. The use of a library is supposed to
save the developer work with code reuse. Debugging applications are challeng-
ing enough without worrying about components outside of their control. When
bugs are encountered, investigation begins by ruling out unlikely sources of the
problem. This assumption narrows the field of search. For example, programmers
usually rule out compiler bugs, interpreter bugs, and libc errors initially because
they are trusted. When implementing a neural network software library, its cor-
rectness must be verified to ensure that it can be trusted. The application being
built on top of it is difficult enough to get right without basic routines failing.
Working with large amounts of data is fraught with perils and tracking down
problems is notoriously difficult. In this section, we discuss a useful approach to
validate a software implementation of backpropagation to ensure correctness.

ANN models are assembled by combining layers implemented in a software
library. So far we have only encountered three types of layers in this text and a
single way to connect them (dense). The introduced layers are the preprocessing
layer, dense layer, and softmax. It is important to verify that not only do the individ-
ual layers work, a process called unit testing, but that when combined in a model
they continue to work properly, known as integration testing. Following successful
integration testing, confidence in the implementation may be warranted.

A powerful technique to verify the correctness of the implementation of a
numerical algorithm is cross validation. When implementing numerical algo-
rithms, it is important to verify an implementation with known results of a
computation for comparison. The alternate results may be produced by hand or
simply computed with a different means on a machine. If the results agree, then
that suggests that confidence in an implementation is warranted. In the case of
a preprocessing layer, this is fairly straight forward. The statistics computed by
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a preprocessing layer are easily verified with other software packages such as R
or MatLab. The other types of layers in an ANN library are more challenging.
We want to verify the correctness of the implementation of backpropagation
in the layers. This is not a job for an application developer training a model.
Verification needs to be performed by the people writing the software libraries
that application developers use. It is also useful when doing research. Verifying
an implementation of a new layer is vital to ensure that the experimental results
can be trusted.

Verification of an implementation can be performed by computing the expected
gradient with differencing equations. Consider the gradient at some weight, wi, in
the neural network. Then the backpropagation implementation will compute 𝜕L

𝜕w
.

We wish to confirm that the quantity, 𝜕L
𝜕w

, is correct. We can verify the result by
computing it directly with the definition of a derivative. Both results should agree
and confirm the correctness of the backpropagation implementation. The classical
definition of a derivative is

dL
dw

= lim
h→0

L(w + h) − L(w)
h

. (3.43)

Notice that we have used L, the loss, and not the ANN, as we need the derivative of
the loss with respect to the weight, not the ANN per se. That is how 𝜕L

𝜕w
is computed.

The derivative is computed by selecting a datum from the training set and com-
puting ComputeLoss ((x, y)). The loss is recorded, w + h is then used in a second
invocation. The new loss is computed and the approximate derivative calculated.
If we obtain “acceptable,”

dL
dw

≈ 𝜖
𝜕L
𝜕w

, (3.44)

results for every weight in the layer, then we can have confidence that our
backward propagation code works correctly.

In a real computer, implementation such a naïve numerical differentiation is
unreliable. This can quickly lead to trouble and require large, and potentially
meaningless, choices of 𝜖. It must always be borne in mind that the real number
line does not exist in a computer. An arithmetically correct algorithm is not
necessarily correct when implemented in a computer. The above definition of
a derivative must be approximated with the discrete representation in a com-
puter. Employing a truncated Taylor series expansion we can get an idea of the
arithmetical and analytical error that we can expect,

L(w + h) = L(w) + L′(w) ⋅ h + O(h2), (3.45)

rearranging leads to,

L(w + h) − L(w)
h

= L′(w) + O(h). (3.46)
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We can see that this naïve approach leads to error that is linear in h. The error is
very high for an application such as verifying the correctness of gradient propaga-
tion through an ANN implementation. By using a centered form of approximating
the derivative, we can compute the gradient a second way that is far more accurate,

dL
dw

= lim
h→0

L(w + h) − L(w − h)
2h

. (3.47)

It is centered because the computation looks in both directions around w giving us
a better idea of local behavior. The improvement can be quantified by expanding
the Taylor series by a further term and doing it in both directions,

L(w + h) = L(w) + L′(w) ⋅ h + L′′(w) ⋅ h2

2!
+ O(h3), (3.48)

and,

L(w − h) = L(w) − L′(w) ⋅ h + L′′(w) ⋅ h2

2!
− O(h3), (3.49)

subtracting the two equations and the second-order terms cancel. Solving for the
derivative we are interested in produces an expression with second-order error:

⟹ L(w + h) − L(w − h)
2h

= L′(w) + O(h2) ≈ dL
dw

, (3.50)

and we can see that the error is now quadratic in h. The first-order errors cancelled
themselves out, taking with them many numerical problems as well. In practice,
in a computer implementation, h must be chosen very carefully.

There are now two means of computing the gradient anywhere in a neural net-
work. They will rarely agree exactly so we still need a means of comparing the
results. The following is used,

|bprop| − |diff ||bprop| + |diff | , (3.51)

where bprop is the value from backpropagation and diff is the result of the centered
differencing equation. The closer to zero the better. The comparison can be done
at any point in an ANN’s graph.

Some important practical details to consider, it is best to only take a couple of
training steps before performing the verification. Too late and the gradient will
be too faint (the ANN is growing accurate so the error is small). Too early and
the results can be erratic. It is also recommended to use double-precision floating
point variables for verification. The deeper in the network, the smaller h can be
(deeper is closer to the loss function, and the stronger the signal will be). A good
starting point for h is 10−7. The entire process is shown in Algorithm 3.4. It verifies
the 𝛿s of a dense layer.
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Algorithm 3.4 Verify Gradient
1: procedure VERIFYLAYER(layer 𝓁, tolerance 𝜖, differential h, datum x)
2: G = ComputeBPROP (x) ⊳ Compute and store the 𝛿s
3: for neurons(i) ∈ 𝓁 do
4: save ← u[i]
5: u[i]← u[i] + h
6: z[i] ← 𝜎(u[i])
7: Compute(𝓁 +1, z) ⊳ only need to compute deeper layers
8: diff ← Loss()
9: u[i]← save - h ⊳ Now difference in the other direction

10: z[i] ← 𝜎(u[i])
11: Compute(𝓁 +1, z)
12: diff ← diff - Loss()
13: diff ← diff

2⋅h
14: ratio ← |diff |−|G[i]||diff |+|G[i]|
15: assert(ratio ≤ 𝜖)
16: u[i] ← save
17: z[i] ← 𝜎(save)
18: Compute(𝓁 +1, z) ⊳ ante-state fully restored
19: end for
20: end procedure

|diff
0
| − |G[0]|

|diff
0
| + |G[0]|

|diff
1
| − |G[1]|

Differencing
layer

Layer to be
verified

|diff
1
| + |G[1]|

|diff
2
| − |G[2]|

|diff
2
| + |G[2]|

1 1 1

Figure 3.8 An ANN with a differencing
verifying the backpropagation of error of the
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Table 3.2 Verification Results

BPROP Differencing Ratio

0.001181 0.001181 0.000000
0.000791 0.000791 0.000000

−0.002559 −0.002559 0.000000
0.000381 0.000381 0.000000

−0.000849 −0.000849 0.000000
−0.017801 −0.017801 0.000000

0.006248 0.006248 0.000000
−0.002292 −0.002292 0.000000
−0.018861 −0.018861 0.000000

Comparison of values computed with backpropagation of error
and differencing. The ratio of zero indicates good agreement
between both methods suggesting correctness of the BPROP
implementation.

When new types of layers are implemented and added to a library, they can be
verified with the above algorithm. A model can be created with the new type of
layer and with a generic dense layer above it (shallower). If backpropagation is
flowing correctly through the new type of layer, then the instrumentation in the
dense layer will confirm it (Figure 3.8).

It is important to bear in mind that differencing assumes a continuous function;
dense layers are continuous. Many types of ANN layers, such as the max pooling
and convolutions found in Chapter 6, have important discontinuities that need to
be accounted for when the above method is used. Differencing can still be used
but the discontinuities must be accounted for.

The Table 3.2 presents examples of output of the verification Algorithm 3.4 for
an ANN implementing sine with two hidden layers of 5 and 4, respectively. It
is clear that the library that was used to build the model is correct. A value of
h = 0.0000001 was used.

3.8 Summary

This chapter introduced the rudiments of training ANNs. It was seen that pre-
processing the data is critical to success. The basis of learning is employing a
quantitative “loss” function to measure progress. The loss function must be dif-
ferentiable. Backpropagation of error from the loss function is used to update the
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ANN’s weights. It is the backward phase of training that constitutes “experience”
from which a model learns. Verification of implementations is critical to gaining
confidence in results and detecting silent problems.

3.9 Projects

1. Recall the material on numerical stability in Section 1.4 and apply it to
computing the derivative for the sigmoid function. The following equality
is mathematically correct, 𝜎(1 − 𝜎) = 𝜎 − 𝜎2. But are they floating point
equivalent? Which form of the equation is better suited to a computer?
Validate your belief with an argument and computer experiments.

2. Explain why preprocessing was not required for the example in project 1 in
Chapter 2.

3. The algorithms in Algorithm 3.3 have been implemented in a Python notebook
that can be found here, https://github.com/nom-de-guerre/DDL_book/tree/
main/Chap03. Use them to implement Algorithm 3.2. Test it by training the
sine example.

https://github.com/nom-de-guerre/DDL_book/tree/main/Chap03
https://github.com/nom-de-guerre/DDL_book/tree/main/Chap03
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4

Training Classifiers

This chapter presents how to train classifier artificial neural network (ANNs).
The loss functions required are motivated and derived. The inherent and fun-
damental supporting concepts are also demonstrated. Chapter 3 detailed how to
train a regressor ANN. Backpropagation of the loss gradient was used to compute
updates for every learnable parameter in an ANN’s graph. The loss is a quantitative
metric for the incorrectness of an ANN’s output. Classifiers differ substantively
from regressors in only one particular: the loss function. The loss function is very
important as it not only measures progress, but its derivative is the inceptive step of
the backpropagation of error. mean squared error (MSE) is not appropriate for clas-
sification so we begin by motivating an appropriate loss function for classification.

4.1 Backpropagation for Classifiers

Having demonstrated how to train ANN regressors, we now proceed to the more
important class of ANNs, classifiers. We can use backpropagation to train classi-
fiers, but the inceptive step is different. The difference lies in the choice of loss
function. In this section, we motivate and present an appropriate loss function for
classifiers. The loss function is then differentiated to initiate the back-propagation
recurrence for classifiers. We begin by motivating our loss function.

Recall that an ANN classifier has the softmax function at the output layer.
Softmax accepts the logits from the output layer of the ANN and produces a
synthetic “probability” distribution in the form of a vector. The probability
distribution is over the possible classes. It is discrete and expresses a degree of
belief; the maximum probability is selected as the final prediction for the class
of the argument. As with regressors, a classifier needs to learn from a training
set of examples. The training set for a classifier takes the form (x1, p1 = [one-hot
encoded vector]1), … , (xN , pN = [one-hot encoded vector]N ) , where x is a vector
of predictors, and the ground truth is a probability distribution.

Demystifying Deep Learning: An Introduction to the Mathematics of Neural Networks,
First Edition. Douglas J. Santry.
© 2024 The Institute of Electrical and Electronics
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Let 𝕂 be the set of classes, that is, the range of the classifier, and K = |𝕂| be
the number of classes. Softmax produces a vector of probabilities, and the training
examples use one-hot encoded vectors, which can also be interpreted as a discrete
probability distribution. The two distributions, pi and p̂i, need to be quantitatively
compared to compute a loss. The MSE does not make sense when comparing dis-
tributions in the form of probability mass functions; they are not continuous. To
train a classifier, we need a loss function that is more appropriate, a measure of
similarity between probability distributions.

4.1.1 Likelihood

Before the loss function is presented, a brief digression is indicated to introduce
the idea that the loss function is based on the notion of likelihood. Likelihood is
often used colloquially as a synonym for probability, but it is subtly different. It is
easiest to grasp the difference with a simple example. Suppose someone claims to
have a fair coin, an equal probability for either a head or a tail, and plays a game
with you. Over the course of 15 tosses 12 heads and 3 tails are observed. Is the coin
fair?

Coin flips are distributed binomially, P(X = S|𝜃) = (
N
S

)
𝜃S(1 − 𝜃)N−S, where S is

the number of tails and we have conditioned on the parameter, 𝜃, the probability
of a tail. The binomial distribution could be used to compute the probability of
X = 3 tails, as it is claimed that the coin is fair and it is assumed that 𝜃 = 0.5. This
results in a probability of the observed outcome of 0.0138855, or 1.4%: but it is the
claim that the coin is fair that needs to be addressed. We are really interested in
the value of 𝜃 that explains the observations. The task is to fit observed data to a
distribution, not make a prediction (we have the data). The object is to find the
most likely value of 𝜃 that explains the observed data. The tool for such problems
is called a maximum likelihood estimator (MLE).

Probability is used to predict data, and likelihood is used to explain data. All of
X , S, and N are known. 𝜃 is the variable, so we use a likelihood function to find 𝜃.
For discrete probabilities, the likelihood function is the probability function with
the outcome fixed and the parameters varied. For more details and a thorough
introduction see (110).

The likelihood function for the binomial distribution is conditioned on the
observed data:

ℒ (𝜃|X = 3) =
(15

3

)
𝜃3(1 − 𝜃)12. (4.1)

The object is to find 𝜃 that maximizes the likelihood function. Its graph is presented
in Figure 4.1. 𝜃 = 0.5 seems very unlikely. The maximum likelihood lies in the gray
region of the curve. A more plausible value for 𝜃 lies between 0.15 and 0.3, hence
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Figure 4.1 Likelihood for the fairness of a coin following 15 tosses and observing 3
tails. The portion of the curve that is gray is where the likelihood is highest indicating
that 𝜃 is like found there, between [0.1, 0.3]. This suggests that the coin is likely unfair.

we conclude that the coin is not fair. The notion of likelihood is very powerful, and
it can be used to train categorical ANNs.

4.1.2 Categorical Loss Functions

A meaningful loss function for a categorical ANN must account for the discrete
distribution over the categories. We want to measure the degree of difference
between a computed distribution and the ground truth distribution, not contin-
uous values. To that end, we employ an MLE for a local loss function. Treating
the softmax layer as the final layer in the model, then the output of the ANN is a
vector of probabilities distributed over the classes,

p̂ = ANN(x ∣ w) = (p̂1, ..., p̂K), (4.2)

here the ANN is conditioned on the weights. What is the likelihood of the proba-
bilities computed by softmax with the weights? The output of softmax is a vector of
random variables, and we are interested in their joint distribution. If we view the
elements of the vector produced by softmax as probabilistically independent, then
by the chain rule for probability we want to choose weights, w, that maximizes:

f (p̂|w) = f (p̂1, ..., p̂K|w) = f (p̂1|w) ⋅ ... ⋅ f (p̂K|w), (4.3)
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where we have conditioned on our parameters, the weights. Given the output of
softmax, p̂ = {p̂1, ..., p̂K}, we want to maximize the likelihood that p̂ represents the
ground truth, p. The likelihood function, ℒ , for independent conditionals is

ℒ (p̂;w) = argmaxw

K∏
p̂pi

i . (4.4)

In other words, the loss function for classification is the response of the ANN expo-
nentiated to the ground truth (the expected number of times they should appear),
the one-hot encoded vector from the training set. This function is maximized when
all the p̂i = pi. When training categorical ANNs all the pi will be zero except for one
item, the target class.

The problem with this loss function is that it is a product, and underflow is a
serious problem. There is also the ironic problem of correct progress, one zero fac-
tor, which is desired given one-hot encoding, and there is no information at all. It
is more convenient to work with a sum. To that end the natural logarithm is taken,
written log, of the MLE. The choice of base e is not mathematically required, but
it will be prove to be a very convenient choice when differentiating softmax below.
Taking the negative logarithm of ℒ yields a more convenient function (the expo-
nents are probabilities). We give it below for an ANN with K possible classes:

Loss(p, p̂) = −
K∑
k

pk log(p̂k), (4.5)

where we are iterating over a one-hot encoded vector. This function compares the
ground truth with the computed vector. Only one pk is nonzero (it is 1, the target
class), and the rest are zero. Maximizing the original likelihood function is done
by minimizing the loss function.

The loss function can also be arrived at with information theory (26). In the
context of information theory, the loss is known as H, the cross entropy. Infor-
mation theory uses a logarithm with base 2, and this gives units of Shannons,
or Shannon bits, after Claude Shannon. Claude Shannon is the father of modern
information theory. He published a seminal paper, “A Mathematical Theory of
Communication,” published in Bell Labs’ internal journal, Bell System Technical
Journal. Shannon developed information entropy as a means of computing the
optimal length of messages for distributions (such as the frequency of letters in a
language, e.g. English or Arabic). Cross entropy can be interpreted as the loss of
information when using a suboptimal encoding.

With the definition of an appropriate local loss function, the global objective
function can be defined. Training a classifier ANN attempts to minimize:

GOFt = − 1
N

N∑ K∑
k=1

pk log(p̂t
k), (4.6)
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where there are N training examples and K categories. Again, as with the MSE,
as the cross entropy → 0.0 the information loss approaches zero and the model is
converging. It is rare for the cross entropy to actually reach zero, and it is standard
procedure to specify a loss threshold below which training is halted. The threshold
specified depends on the application. In practice, the inner sum does not need to
be computed as the pk will all be zero except for the target class, which is 1, so only
one term is nonzero. The simplified version is

GOFt = − 1
N

N∑
log(p̂t

target). (4.7)

The MLE is used to seed the backpropagation of error to train a classifier. The
strategy is the same as for a regressor measured with MSE. The weight updates
that reduce the loss function need to be computed, so we need the 𝜕L

𝜕w
for every

weight in the ANN. The output of a classifier is different from a regressor owing to
the softmax function. The softmax accepts the raw output of the ANN, logits, and
from that point backpropagation is no different from a regressor. The strategy then
is to differentiate from the loss function to the logits then perform backpropagation
as usual.

4.2 Computing the Derivative of the Loss

The recurrence needs to be initiated and so the derivative of the loss function is
required. From the loss function, the gradient will pass through the softmax layer
to reach the output layer of the ANN. Cross entropy must be differentiated, then
softmax and finally the gradient will reach the output layer of the ANN. Once the
gradient reaches the logits, the backward pass proceeds as usual. The object of this
section is to show how to compute the 𝜕L

𝜕zi
of the logits.

Recall that an ANN classifier has K output nodes. An ANN then has K logits,
the length of the zoutput tuple. For the remainder of the section, subscripts on z are
the index into the tuple. The zi are the inputs to softmax (for example 3 in the iris
model). The object is to compute the K values of 𝜕L

𝜕zi
. This means that we need to

differentiate,

Loss(p, p̂) = −
K∑

k=1
pk log(softmax(zk)), (4.8)

where we have convolved softmax with cross entropy. Let P̂(z) be the softmax
function. Then we begin by recalling the definition of softmax. For the class i, its
softmax probability is

p̂i = P̂(i) = ezi∑K
k ezk

(4.9)
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and,

p̂ = (P̂(0), ...,P(K − 1))T , (4.10)

the vector of all the softmax probabilities.
To compute the 𝜕L

𝜕zi
we start by differentiating the loss with respect to the output

of the neuron for each class i.

𝜕L
𝜕zi

= 𝜕

𝜕zi

(
−

K∑
k

pk ⋅ log(p̂k)

)

= −
K∑
k

pk
1
p̂k

𝜕P̂(k)
𝜕zi

= −pi
1
p̂i

𝜕P̂(i)
𝜕zi

−
K∑

k≠i
pk

1
p̂k

𝜕P̂(k)
𝜕zi

, (4.11)

where the problem has been split into two cases. The first term is the case where
i is the class with which we are differentiating with respect to; we have broken it
out of the sum. The second term is the sum containing the remaining i ≠ k terms.
Our strategy is to deal with the two cases separately and recombine the results.
The first case is

−pi
1
p̂i

𝜕P̂(i)
𝜕zi

. (4.12)

Let us compute

𝜕P̂(i)
𝜕zi

= 𝜕

𝜕zi

(
ezi∑

je
zj

)
. (4.13)

We employ the product rule to differentiate. Let A = ezi , and B =
(∑K

j ezj

)−1
. Then

AB = p̂i. This leads to,
𝜕

𝜕zi
(AB) = A′B + AB′

= AB + AB′

= p̂i − ezi ⋅ B2 ⋅ ezi

= p̂i − p̂2
i

= p̂i(1 − p̂i)

= 𝜕P̂(i)
𝜕zi

.

Substituting 𝜕P̂(i)
𝜕zi

back into Eq. (4.12) we obtain,

⟹ −pi
1
p̂i

𝜕P̂(i)
𝜕zi

= −pi
1
p̂i

p̂i(1 − p̂i) = pip̂i − pi. (4.14)
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The second term containing the residual classes is the sum,

−
K∑

k≠i
pk

1
p̂k

𝜕P̂(k)
𝜕zi

. (4.15)

Employing a similar strategy as above, we use the product rule to differentiate 𝜕P̂(k)
𝜕zi

.

Let A = ezk , and B =
(∑K

j ezj

)−1
. Then,

𝜕P̂(k)
𝜕zi

= A′B + AB′

= AB′

= −ezk ⋅ B2 ⋅ ezi

= −p̂kp̂i. (4.16)

Substituting back into Eq. (4.15) we find:

−
∑
k≠i

pk
1
p̂k

𝜕P̂(k)
𝜕zi

=
∑
k≠i

pk
1
p̂k

p̂kp̂i =
∑
k≠i

pkp̂i. (4.17)

Recombining our results obtained for Eqs. (4.12) and (4.15) we reconstitute the
original equation:

−pi
1
p̂i

𝜕P̂(i)
𝜕zi

−
K∑

k≠i
pk

1
p̂k

𝜕P̂(k)
𝜕zi

= pip̂i − pi +
K∑

k≠i
pkp̂i

= −pi +
K∑
k

pkp̂i

= −pi + p̂i

K∑
k

pk

= p̂i − pi. (4.18)

The full sum was reassembled and we take advantage of the fact that
∑K

k pk = 1 to
simplify the final expression. Thus, we arrive at,

𝜕L
𝜕zi

= p̂i − pi. (4.19)

The expression cross-entropy’s derivative looks very similar to the derivative
of the squared error used for regression, a simple difference between the com-
puted answer and the ground truth. This is the inceptive step of the recurrence for
backpropagation when training classifiers. It does not look very different from the
squared loss for regression, but note that it is applied to every class, that is, the K
outputs of the ANN, e.g. all three species of iris in the example classifier. Moreover,
pi is zero for every class except the target class, in which case it is 1.
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4.2.1 Initiate Backpropagation

It should be noted that the activation function for the output neurons of a classi-
fier should be the identity, so 𝜕𝜎

𝜕u
= 1 in the output layer, which means that

𝛿i = p̂i − pi. With the K 𝛿s computed for the output layer, the standard
back-propagation algorithm proceeds as described for regressors. The weight
updates are computed as the gradient is propagated back through the ANN’s
graph. The procedure is depicted in Figure 4.2.

Lastly, training can be a long process with each step improving on the earlier
one; we do not want to waste earlier work with carelessness. Training should prop-
agate gradients backward, not numerical problems. It is important to catch IEEE
numerical errors early. The IEEE values of NaN and±∞ can result in many places.
The special values of ±∞ will result in NaN if used in a calculation. One of the
easiest ways to introduce NaN is in the evaluation of the loss function. A NaN in
the loss will spread and destroy all of an ANN’s net weight gradients accumulated

setosa

versicolor

Softmax Loss = H = – Σ pk log(pk)

virginica

δ
setosa  =

∂L∂setosa = p
0  – p

0

ˆ

= p1–p1ˆδversicolor =
∂L

∂versicolor

= p 2 –
 p 2

ˆ

δ vir
ginica

 =

∂L

∂ vir
ginica

∂L

∂w–

∂u

∂w–
= δvirginica·

ˆ
K

k

1 1

Figure 4.2 Detail of an iris classifier’s terminal layer. The softmax layer runs into the
loss function where the back propagation begins. It is differentiated with respect to each
class, k.
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so far in the training epoch, ΔWi =
∑epoch so far

j
𝜕Lj

𝜕wi
, and if not caught, the weights

themselves during the weight update. If the weights are destroyed, the training
has to be restarted. It is important to monitor the values for NaN to detect and
contain the problem early. It is too expensive to check after every floating point
operation, and usually not necessary. It is best to place the checks strategically
in the code. There are two important places that should be considered, and it is
strongly advised to implement both. The first is following the computation of a
training item’s loss. It is advisable to verify that it is valid number as backpropa-
gation flows from this starting point. If the result is invalid, then skip the example
for this epoch, or substitute a sensible value. The second safety checkpoint should
be in UpdateWeights. Verify each of the updates prior to use. If an NaN gets into
the weight itself training will have to be restarted, so protect them – they repre-
sent all progress thus far. Should an NaN be detected in a weight update skip that
particular weight and continue updating the remaining weights. The remaining
good updates will hopefully move the solution out of the bad neighborhood on
the loss surface. If it is a frequent occurrence, then there is probably a bug in the
implementation.

4.3 Multilabel Classification

The classifying neural networks presented so far are known as multiclass prob-
lems. Given a set of categories, 𝕂, a datum could only be a member of one of the
classes. For example, an iris flower can only be one species. Membership in the cat-
egories is mutually exclusive. There are, however, problems where membership of
multiple classes is desirable, that is, a datum can be a member of more than one
category. The problem is known as multilabel classification. To solve this problem,
a different technique is required, and we present it here.

Consider the problem of classifying an email by subject matter. Emails fre-
quently touch on many subjects. A forensic examination of a batch of emails might
be interested in the following topics, 𝕂= {HR, Finance, Budget, Criminal}.
Forcing an email to be a member of a single category would clearly lose a great
deal of information. To that end we permit an email to be a member of multiple
classes. The training set for such a classifier could not use one-hot encoding. In
this problem, an email can have multiple labels. To account for the difference, the
problem is known as multilabel classification.

Multilabel classification refers to the fact that a datum can have more than
one label. Multiclass classification is framed very differently. The fundamental
difference is the relationship between the outputs. The mutually exclusive class
membership of multiclass problems can be represented with one-hot encoding,
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which can be efficiently represented with a single integer, the index of the “1”
in said vector. Softmax produces a distribution over the output vector. Multilabel
classification is different as membership in all the classes is independent. The
question of membership of one class has no bearing on membership in another
class. Thus multilabel class membership can be treated separately with respect to
each category. Each class can be interpreted, and treated, as a binary classifier.

4.3.1 Binary Classification

A multilabel classifier has an output node for each class in 𝕂. It differs from a mul-
ticlass classifier in that there is no terminal softmax layer. Instead, a normal dense
layer is used with the sigmoid activation function. The range of the sigmoid func-
tion is [0, 1], so the sigmoid’s output can be interpreted as a probability. Again, let
K = |𝕂|, then a multilabel classifier has K terminal nodes and produces K inde-
pendent probabilities (Figure 4.3).

There remains the question of interpreting what a multilabel ANN is predicting.
Softmax produces a probability distribution and so the maximum probability is the
prediction of the CNN. Multilabel CNNs produce K probabilities, but which of the
K is the ANN suggesting? The prediction is performed by specifying a threshold
probability, typically 0.5, above which a probability is construed as being a predic-
tion for the class. The probabilities can be mapped to a vector of class membership
using the threshold. This produces a vector with multiple 1’s and 0’s indicating the
CNN’s prediction. The final output could also be a boolean vector of logical values,
True or False.

4.3.2 Training A Multilabel Classifier ANN

Training a multilabel classifier is relatively straight forward. The first step is to
select a loss function. As it is a classification, problem the cross entropy loss func-
tion is appropriate. The cross entropy function is

H = −
K∑
k

pk ⋅ log(p̂k). (4.20)

The special case of binary classification is simpler. A datum is either in the class
or it is not. This is captured in the following formulation for a class, k:

lossk = −[pk ⋅ log(p̂k) + (1 − pk) ⋅ log(1 − p̂k)]. (4.21)

This leads to the local loss function,

loss = 1
K

K∑
k

lossk. (4.22)
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Figure 4.3 An example of a multilabel classifier. The outputs corresponding to the 4 classes are independent. The final output is a vector
with 4 entries mapped to category membership based on a probability threshold. The per class 𝛿s are indicated.
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The global objective function to minimize is

GOF = 1
N

N∑ 1
K

K∑
k

lossk, (4.23)

where there are N examples in the training set.
A multilabel CNN can be trained with backpropagation. To initiate the inceptive

step, the loss function must be differentiated. It is much simpler to derive as there is
no softmax function, just sigmoid. As the classes are all treated independently, the
work is greatly simplified. The special case of binary cross entropy is the beginning
of the backwards pass:

𝜕L
𝜕p̂k

= 𝜕

𝜕p̂k

(
− (pk ⋅ log(p̂k) + (1 − pk) ⋅ log(1 − p̂k))

)
, (4.24)

this leads to,
𝜕L
𝜕p̂k

=
−pk

p̂k
+

−(1 − pk)
1 − p̂k

⋅ −1

=
−pk ⋅ (1 − p̂k) + p̂k ⋅ (1 − pk)

p̂k ⋅ (1 − p̂k)

=
p̂k − pk

p̂k ⋅ (1 − p̂k)
. (4.25)

This was a relatively simple derivative to compute, but numerically it is fraught
with danger. Luckily, it does not need to be evaluated1 . The computed probability
is p̂k = 𝜎(uk). As the activation function is known, it is the sigmoid function, and
recalling that the derivative of the sigmoid function function is p̂k ⋅ (1 − p̂k), the
expression can be simplified. It is best to work with the per class 𝛿. It can be easily
computed,

𝛿k = 𝜕L
𝜕p̂k

⋅
𝜕p̂k

𝜕u
=

p̂k − pk

p̂k ⋅ (1 − p̂k)
⋅ p̂k ⋅ (1 − p̂k) = p̂k − pk. (4.26)

With 𝛿k computed the backpropagation of error takes places as usual. The termi-
nal layer computes the deltas using this numerically stable method, updates its
weights, and propagates the error back through the network.

4.4 Summary

Backpropagation of error is used for training classifiers, but a different loss
function is employed. Multiclass classification is prediction of membership in a

1 Never forget that computing is different from doing mathematics. This is a classic example of
anticipating the computational pitfalls and obviating them.
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mutually exclusive set of categories. One-hot encoded vectors are used to repre-
sent the set. The loss function is cross entropy across the distribution produced
by softmax. Multilabel classification provides for membership of a datum in
multiple categories. Each category is treated independently. Instead of softmax,
the sigmoid activation is used. The loss is special case of cross entropy, per
category binary cross entropy.

4.5 Projects

1. The webpage, https://github.com/nom-de-guerre/DDL book/tree/main/
Chap04, contains a Python notebook implementing an Iris classifier. It is
missing the softmax layer. Write a routine that accepts the logits from the
classifier and produces the network’s prediction and its probability.

2. Topology plays an important role in the performance of a model. Using the Iris
classifier plot, the loss of the network is (Minput, Mhidden, loss).

3. Project the predictors and inference to (x, y, z, color) space, where color is
the species predicted. This means that 1 predictor out of the 4 will have to
be dropped. Does the choice of projector make a difference to the decision
boundary?

https://github.com/nom-de-guerre/DDL
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5

Weight Update Strategies

In Chapters 3 and 4 it was seen that the training of artificial neural networks is the
act of fitting weights to models with respect to a training set. While the updates to
weights was related to how the loss function is changing, how to precisely quantify
the update was not discussed. In this chapter, we examine the process of updating
weights more closely and present some strategies for selecting the updates effi-
ciently. The treatment consists of two prongs. The training step itself is examined
followed by a closer look at the individual weight updates themselves.

An important consideration for training is the batch size used for a training
epoch. The training process, as described, is a sequence of discrete steps called
epochs. During each epoch, ComputeLoss is called for every element in the training
set. ComputeLoss performs backpropagation, and the per weight net gradients are
accumulated. The weights are only updated after the net gradients are computed.
The net gradient reflects all of the information in the training set. A training step
that makes use of the entire training set is called a batch step. Batch steps are not
always desirable. There are alternative methods, one of which is stochastic gradient
descent. It forms the topic of Section 5.1.

5.1 Stochastic Gradient Descent

There are occasions when training sets are so large that batch training is undesir-
able or even infeasible. Stochastic gradient descent (SGD) is an alternative means
of training artificial neural networks (ANNs) (93). SGD is the basis of almost, if
not all, deep learning (DL) training. SGD is not a method confined to use with
training ANNs, nor did it originate with ANNs or even with machine learning. It
is a general technique used in optimization problems framed as fitting the param-
eters of a function with respect to data. Its modern origins lie in the 1950s and
was known as the Robbins–Monroe method, but arguably reached maturity in the

Demystifying Deep Learning: An Introduction to the Mathematics of Neural Networks,
First Edition. Douglas J. Santry.
© 2024 The Institute of Electrical and Electronics
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1960s as statisticians began to examine the use of the latest technological marvels,
digital computers in the form of mainframes, to deal with experimental data and
regression. By then the technique had evolved into stochastic estimation, intro-
duced by Kiefer and Wolfowitz (83). The interested reader is encouraged to read
the latter as it is both concise and approachable.

SGD attempts to approximate the net gradient by sampling a subset of the gradi-
ents, that is, by only using a subset of the training set between weight updates.
In “pure” SGD, the weights are updated after each evaluation of ComputeLoss,
see Algorithm 5.1. In practice training, ANNs with pure SGD is rarely used. All
of the arguments for batch processing adduced above suggest that updating the
weights following a single sample is a bad idea. An alternative refinement to SGD
is used, called “minibatch,” and described in Algorithm 5.2. Instead of updating
the weights after every call to ComputeLoss, a random subset of data is sampled
from the training set, called a minibatch, and the minibatch is used for the training
epoch.

Algorithm 5.1 Pure Stochastic Gradient Descent
1: procedure SGD PURE

2: GOF ← +∞
3: while GOF > 𝜖threshold do
4: randomly select x, y ∈ Training Set
5: GOF ← ComputeLoss(x, y)
6: UpdateWeights ()
7: end while
8: end procedure

The insight behind mini-batch SGD is that if the describes the problem domain
(the ground truth), then a randomly selected subset of the will approximate the
gradient well. By repeatedly sampling the training set randomly, then, on average,
the correct gradient is computed and the ANN will converge to a good solution.
Moreover, many training examples are redundant or superfluous. If data points
are sufficiently close together in the input space, then there is no need to use all of
them at once. Because the full training set is not used with every epoch, less work is
done. Epochs are shorter and solutions are found sooner. The size of the minibatch,
by which we mean the percentage of the training set used in a minibatch, varies
greatly between applications and datasets.

Figure 5.1 presents the results of training 4 models to recognize the MNIST
dataset of hand-written digits. MNIST consists of 60,000 28 × 28 black and white
images of hand-written digits and 10,000 further examples for testing. It is a plot
of epoch number versus loss demonstrating the progress of training over time. All
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Algorithm 5.2 Mini-Batch Stochastic Gradient Descent
1: procedure SGD
2: working ← True
3: streak ← 0
4: while working do
5: GOF ← 0.0
6: randomly select Xt ⊂ Training Set
7: for x, y ∈ Xt do
8: GOF ← GOF + ComputeLoss (x, y)
9: end for

10: UpdateWeights ()
11: GOF ← GOF÷NminiBatch
12: if GOF ≤ 𝜖threshold then
13: streak ← streak + 1
14: if streak == n then
15: working ← False
16: end if
17: else
18: streak ← 0
19: end if
20: end while
21: end procedure

four curves are relatively well clustered signifying that all four models are con-
verging at roughly the same rate; but they are not doing the same amount of work!
The run using a minibatch size of 10% is doing roughly 1/10th of the work of a full
batch, but it is converging at a similar rate. This claim is borne out by Table 5.1. As
the size of the mini-batch decreases, the time taken to train exhibits corresponding
decreases as well. The accuracy of the final model (all values represent 100 epochs)
does not seem to suffer. It must be emphasized that 10% is not being proposed as
a universal mini-batch size. The size will vary widely between problem domains
and datasets. But it does demonstrate the advantages of mini-batch training with
SGD.

Ideally, the subsets are sampled from the full training set by randomly permuting
the order of the training set. During batch training, the training set is iterated over
in the same order every time; the order does not matter when the entire training
set is used. The best implementation of SGD is to randomly permute the order
of the training set. Every time the model has finished iterating over the complete
training set, the order is permuted again (so no minibatch is the same). Let n be the
number of mini-batches required to consume the entire dataset once (the inverse
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Figure 5.1 Four training runs using SGD to train a classifier to recognize the MNIST
hand-written digits dataset. Each run had a different % of the dataset for a minibatch. All
models were trained over 100 epochs.

Table 5.1 Table of Times and Accuracy for a Sample of %size
Minibatchs When Training to Learn MNIST

% of Training Set Time (s) Accuracy (%)

100% 1887.93 94.39
50% 1059.6 96.47
25% 618.17 96.11
10% 286.61 94.77

of the minibatch). Every n SGD epochs a new permutation of the training data
order is computed ensuring entirely different minibatches the next time through.
Also, no training example is seen a second time prior to all the other examples
being seen at least once. This ensures that all data examples receive equal weight.

Implementing SGD in a permuted serial fashion has some important qualities.
With this method, we are still using every element of the training set an equal num-
ber of times, that is, each element of the training set is contributing equally to the
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final model, all the elements of the training set are weighted equally. By changing
the order of every n epochs, we are also varying the make up of the minibatches
ensuring many combinations of data examples are producing the approximated
gradients. Some training libraries implement SGD with sampling with replace-
ment, but this is discouraged as the resulting distribution of samples is very dif-
ferent (and, arguably, incorrect). SGD should not be an implementation of boot-
strapping or bagging (36). Sampling without replacement produces better qual-
ity updates. SGD minibatch can be implemented efficiently with the “shuffle”
algorithm (86).

Detecting convergence when training with SGD can be challenging. Batch train-
ing usually exhibits a monotonically decreasing loss function. In contrast, SGD
losses can jump around and exhibit jittery behavior. This is owing to the way losses
are computed in SGD: they depend on a subset of the data, which is usually much
smaller. Sometimes a mini-batch will contain elements that the ANN has learnt
yielding a small loss, then the next minibatch might contain all the pathological
outliers in the training set producing enormous loss. There are many techniques to
cope with the problem. One approach is based on n. If the loss is below the thresh-
old for n epochs in a row, then training has probably converged. An even simpler
variant is to maintain a sum of the losses. At the point of permuting the train-
ing set, the sum is converted to a mean (divided by n) and if acceptable training
is halted. While simple it does have a drawback. Waiting for the next permuta-
tion to test for convergence may postpone acceptance of the solution while doing
superfluous work.

Below we contrast and compare the 3 variants of epochs presented thus far:

1. Full batch training was described in Algorithm 3.2. The entire dataset is
used in every epoch. The weights are only updated once the comprehensive
net gradient representing the entire dataset has been computed. This can be
prohibitively slow for large datasets.

2. Pure SGD, described in Algorithm 5.1. The weights are updated after each loss
computation. This is expensive and also leads to jerky objective function eval-
uations; GOF will be very jittery. The pure form of SGD is expensive because
updating weights can also take a great deal of time for large ANNs. It is more
likely to make “mistakes” as the error gradients are not averaged out before
updating the weights resulting in many superfluous weight updates.

3. Minibatch SGD, described in Algorithm 5.2. In each training epoch, a random
subset from the training set is selected. The gradient is approximated over mul-
tiple examples from the training set, the subset. The idea is that all the approx-
imated gradients will average out over multiple samples. The cost of updating
the weights is amortized over more loss calculations than pure SGD, The objec-
tive function is far smoother than pure SGD.
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SGD is an important means of training ANNs. For the large state-of-the-art prob-
lems in DL, it is almost always used. Problem domains where the datasets are
smaller, such as medical clinical studies where the number of patients might only
be a few hundred, SGD is not as important.

5.2 Weight Updates as Iteration and Convex
Optimization

The object of training is to find good weights for DL models. Backpropagation of
errors permits us to find the errors of weights with respect to the loss function and
improve them. It was shown that a weight should be updated proportionally to
its derivative, 𝜕L

𝜕w
. The precise size of the update was, however, glossed over. The

update was scaled by a static learning parameter, 𝜂. This is extremely naïve. In real-
ity, what the derivative is really telling us is the direction the function is changing,
instantaneously, at that point. The size of the update needs to be dynamic to adapt
to the changing conditions of the error function.

Using backpropagation of error, we can find the per weight derivatives, but the
optimal step size for the weight update is unknown. We want to choose an update
to the weight that will reduce the error in the loss metric. Unfortunately, as we shall
see, determining the optimal step size is often not tractable. Generally something
that is simply ”good enough” is used instead. The weight update problem is

Δw ∝ −𝜂 ⋅ 𝜕L
𝜕w

, (5.1)

but what should 𝜂 be?
Consider the two scenarios depicted in Figure 5.2. Starting from point A, the

slope is very steep. In this instance, it is desirable to take a small step to ensure
that minimum is not missed. The problem when at point B is quite the opposite.
The slope is very shallow, and large steps are desirable to get through plains of
stasis. Ideally, 𝜂 would be adapted to both situations. 𝜂 should not be static. The
scale of the update needs to be adapted dynamically to suit the current conditions.

During training, the weight updates are plotting a course on the surface of the
objective function. The training set contains the parameters, they are static, and
it is the weights that are variable. The objective function is wandering through
weight space seeking a minimum. Let MG =

∑
𝓁M𝓁 , the number of weights in the

entire model. Then it is clear that the objective function, Loss ∶ ℝMG → ℝ, has an
extremely high dimensional domain. The true global minimum is rarely found,
and there is no way of verifying it even if by luck it was found; indeed, there is no
way of even knowing it. Training continues until an acceptable solution is reached.
The search is further complicated as weight updates interfere with each other. At



�

� �

�

5.2 Weight Updates as Iteration and Convex Optimization 93
L

os
s

Weight space

Minimum

A

B

Figure 5.2 A loss surface for a hypothetical ANN. A static choice for 𝜂 is problematic and
would depend on the starting position. The precise shape is not known a priori and so a
dynamic choice is required.

epoch, t, we might have a good update for some weight, wi, but updating weight wj
may interfere with it; the loss is a function of both of them. Most methods update
each weight independently, failing to take account of negative, or positive, side
effects on other weights.

Training is an iterative process. An epoch computes the current loss, updates the
weights and repeats. The iteration has the form,

wt+1
i = wt

i + Δwt+1
i , (5.2)

for weight wi. With increasing epoch, the objective function will be reduced and
the ANN’s weights should converge to a tolerable solution. Iteration is an impor-
tant means of finding the solutions to equations. The remainder of the chapter is
dedicated to presenting a selection of iteration strategies for weight updates. There
is no one best approach. Like any complex problem, there are trade-offs to be con-
sidered. Often the problem domain must be considered, some update strategies
work best with different problems.

5.2.1 Newton’s Method for Optimization

This section presents Newton’s method for optimization. Newton invented an iter-
ative method for convex optimization in the seventeenth century. As we shall see,
while it is not practicable for most ANN training scenarios, it does provide insight
in to the problem of weight updates that will be useful for more widely imple-
mented algorithms.
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Newton was interested in finding the extrema of functions. He used his recently
invented Calculus to do so in the setting of convex optimization. Training neural
networks is often assumed to be a convex optimization problem (18) so his insights
are relevant. Training ANNs is generally concerned with finding minima, as the
objective is to minimize the loss function.

Consider a scaler function, f (w). Let us iteratively find a minimum for f . Then
the object is to find w such that f ′(w) = 0, a stationary point of f . Suppose that,
for whatever reason, we cannot solve the equation analytically (exactly). Then
we need to use a numerical method to approximate a solution. Training a neu-
ral network is the same problem. The training set is constant. The parameters of
the ANN, the weights, are what we are solving for. So we want to optimize the
objective function by finding appropriate weights.

Newton’s method for optimization approximates a solution by starting with an
initial guess, then iteratively improving it. To proceed, start with an initial guess
for the solution, w0, then compute a new value, w1 = w0 + Δw1. Δw is chosen
to improve the guess, that is, f (w0 + Δw1) should move the solution closer to an
extremum.

More generally, at each step, we have wt+1 = wt + Δwt+1. In the case of ANNs,
we want f , the objective function, to decrease so movement should be in the direc-
tion of decreasing f , this suggests that the direction should be −f ′. So we choose
Δw = −𝜂 ⋅ f ′(wt). We still need to choose a value for 𝜂, that is, determine how large
a step we should take in that direction. Too large a step and we may miss the min-
imum. Too small a step and we may have to perform many superfluous updates.
The step size certainly should not be constant.

Newton invented what is now known as a Newton step to determine the step
size. He used the curvature of f . Let us approximate f with a second-order Taylor
series around our current guess, w:

f (w + Δw) ≈ f (w) + f ′(w)Δw +
f ′′(w)Δw2

2!
+ (Δw3). (5.3)

There remains the choice of Δw. Newton used his calculus to find Δw. Differenti-
ating the series with respect to Δw and ignoring error terms yield:

df
dΔw

= f ′(w) + f ′′(w)Δw. (5.4)

Setting the derivative equal to zero and solving for Δw we obtain,

Δw = −
f ′(w)
f ′′(w)

, (5.5)

and so as expected our update is proportional to the first derivative, but it is now
scaled by the local curvature, the second derivative. The full update is then,

wt+1
i = wt

i −
f ′(wt

i)
f ′′(wt

i)
. (5.6)
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Figure 5.3 An example run of Newton’s Method for optimization for the cosine function.
There are 4 steps until it finds a maximum. Each step is numbered.

This is a very elegant and simple result. An example of Newton’s method with a
scaler function is depicted in Figure 5.3. The trouble lies in the fact that ANNs are
not scaler functions. ANN’s can have thousands, and even millions, of parameters
to solve for. Applying Newton’s method for optimization to ANNs requires the use
of matrices.

Extending Newton’s method to matrices, we have g = ∇Loss(x;w), where g is
the gradient, ∇Loss, but approximated numerically with backpropagation, and
H = ∇2Loss(x;w), where H is the Hessian (not the cross-entropy), the matrix of
the second derivatives. Then, Δw = H−1g, is the vector of updates for the weights.
This is an example of a second-order method for training ANNs.

There are two problems with the equation, Δw = H−1g. The first is constructing
the Hessian. Computing the derivatives of the ANN for the Hessian is computa-
tionally prohibitive, especially for state-of-the art problems where there can be
millions of parameters. The second problem is solving the Hessian. Even suppos-
ing that the Hessian could be computed practically, solving such a large matrix
is extremely expensive. The Hessian of an ANN is dense, that is, so many ele-
ments are nonzero that it cannot be considered sparse. The state of the art for
solving matrices of that size, Krylov subspace methods, is targeted at sparse matri-
ces (132). The number of ANN parameters (weights) continues to grow as research
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progresses and the infeasibility of second-order methods becomes more daunt-
ing. Language models have a very large number of parameters. OpenAI’s GPT-4
model has 176 billion learnable parameters (108), and NVIDIA’s Megatron con-
tains around 500 billion parameters (138). The world is waiting for the first model
with 1 trillion learnable parameters. Training such systems is clearly not practical
with second-order methods.

Second-order method for training ANNs is an active area of research (4; 101),
but the results are rarely used in production systems. Newton’s method and the
variant, Gauss-Newton, are often the basis of research (156). There are also other
formulations such as the Fisher information and natural gradients as contents of
the matrices (102). But for the most part, they are impracticable and remain areas
of pure research. The most approachable papers have been cited and the interested
reader is encouraged peruse them. The salient point is that choosing the size of
an update that is optimal is difficult, and the adoption of heuristics is required to
improve first-order choices for 𝜂.

In summary, backpropagation is a means of approximating the instantaneous
error for a particular parameter, 𝜕L

𝜕wi
, but it only determines the direction to move.

The direction is the only truly safe conclusion to draw. The efficient selection of the
step size remains a significant challenge in training ANNs. To fit ANNs first-order
heuristic methods of selecting step size are usually used. There are many algo-
rithms, but no one single method is best in every scenario. A selection of important
examples of weight update strategies is presented below. They address different
niches in the ANN problem domain. The choice of which one to use is very much
application specific.

Weight update strategies are also known as optimizers. This is because they
attempt to minimize the loss function by searching the surface of the loss func-
tion with gradients. The context of the chapter is training ANNs, but optimizers
have many applications outside of DL and indeed, the development of many of
them pre-date DL or machine learning.

5.3 RPROP+

The RPROP+ algorithm addresses itself to the problem of choosing a step size for a
weight update (73). Like most modern learning rules, it relies on backpropagation
to push the gradient through the graph and provide the 𝜕L

𝜕w
s. RPROP+ computes

the step size.
The RPROP+ acronym stands for Resilient PROPagation. The original RPROP

algorithm was introduced in 1993 (124). The + signifies an amended version of
the algorithm that also includes a means of back tracking, a later improvement on
the original work. RPROP+ fully embraces the limitation of the first derivative.
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The sign of the derivative is the only information that it needs. The intuition of
RPROP+ is to continually increase the step size, that is, accelerate, until the sign
of the derivative changes, in other words, it accelerates over the surface of weight
space until it passes a minimum. The solution will then bounce back and forth
over the minimum until it falls in.

The memory requirements are linear in the number of weights. It requires two
variables for each weight and thus consumes 2 ⋅ MG of memory. For each weight,
wi, RPROP+ keeps an update increment, 𝜂t

i , and its last error, 𝜕Lt−1

𝜕wi
. The RPROP+

algorithm consists of three cases, and they are implemented in Algorithm 5.3.

Algorithm 5.3 RPROP+ Update Strategy
1: procedure RPROP
2: if 𝜕L

𝜕w
t
⋅ 𝜕L
𝜕w

t−1
> 0 then

3: Δt ← 𝐦𝐢𝐧(Δt−1 ⋅ 𝜂+,Δmax)

4: Δwt ← −𝐬𝐢𝐠𝐧
(
𝜕Lt

𝜕w

)
⋅ Δt

5: wt ← wt−1 + Δwt

6: else if 𝜕L
𝜕w

t
⋅ 𝜕L
𝜕w

t−1
< 0 then

7: Δt ← 𝐦𝐚𝐱(Δt−1 ⋅ 𝜂−,Δ0)
8: wt ← wt−1 − Δwt

9: 𝜕L
𝜕w

t
← 0

10: else
11: Δwt ← −𝐬𝐢𝐠𝐧

(
𝜕Lt

𝜕w

)
⋅ Δt

12: wt ← wt−1 + Δwt

13: end if
14: end procedure

RPROP+ has 5 hyperparameters. The authors suggest the following values for
the parameters. They are

1. Δ0 = 10−2 : the initial weight update size
2. Δmin = 10−8 : the minimum weight update size
3. Δmax = 50 : the maximum weight update size
4. 𝜂+ = 1.2 : rate of acceleration
5. 𝜂− = 0.5 : rate of deceleration

The authors suggest that RPROP+ is not very sensitive to these choices. The
algorithm is very robust with respect to the choice of hyperparameters. The default
values suggested in the paper are usually used in implementations.
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The RPROP+ algorithm is attractive because it is intuitive and thus easy to
understand, and it is also extremely fast for some problems. RPROP+ continually
accelerates forward on the surface of the objective function until it passes a
stationary point. Then the second and third cases take over as the updates bounce
back and forth over the minimum sinking down into it. An example RPROP+
course presented in Figure 5.4.

While RPROP+ is extremely fast, it does have some serious theoretical limita-
tions. RPROP+ is a batch-oriented algorithm. Recall that batch training provides
for running through the entire training set computing the total net gradient.
The most challenging problems employ SGD, a minibatch scheme. Minibatch
methods rely on averaging approximate gradients over multiple training epochs,
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Figure 5.4 An example path for RPROP+ during the training of a sine ANN. It plots the
loss as a function in weight space with respect to two of the weights in the same layer.
Notice the flat plains and the steep canyons of the loss function. It is crucial to produce
updates in response to changing topology.
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and the errors can vary widely between epochs. RPROP+ can behave poorly
in these circumstances as from line 3 it is clear that following q uninterrupted
steps forward, the step size will be Δt+q = Δt ⋅ (𝜂+)q. Following r moves in the
opposite direction slows RPROP+ down by (𝜂−)r , but even when q = r we have
(𝜂+)q ⋅ (𝜂−)q ≠ 1.0. Put another way, Δt+q+r ≠ Δt. The updates have not cancelled
out (with the default parameters it is a net deceleration). This can lead to serious
convergence problems with SGD variants. The only way to make the updates
average out is to use 𝜂− = 1∕𝜂+, which results in deceleration that is simply
too fast.

Despite these limitations, RPROP+ has been reexamined in recent years in a
number of contexts (74) and it is widely used in many applications. In practice, it
can dramatically out perform the de rigueur weight update schemes when used in
conjunction with SGD, but the theoretical problems should be borne in mind. If
inexplicable convergence problems are observed, it is a good idea to switch to one
of the schemes presented below.

5.4 Momentum Methods

Prior to the development of RPROP+, an important family of update strategies
was developed based on the the idea of momentum. Momentum was first
described in 1964 in a Soviet journal by B. Polyak in the context of first-order
iterative solutions (114). Like many standard machine learning algorithms, its
roots are not purely machine learning. Momentum was adopted much later as a
machine learning technique.

The object of momentum is to smooth the gradient, often with a convex
equation, to produce more consistent updates. The convex expression for a
momentum strategy is

gt = 𝜌 ⋅ gt−1 + (1 − 𝜌) ⋅ gt, (5.7)

where gt = 𝜕Lt

𝜕w
and 𝜌 is a decay factor. g is the value used in the weight update. The

point of momentum is to introduce the memory of past observations to inform
the current update. It is this crude “memory” that approximates the curvature by
accounting for how quickly 𝜕Lt

𝜕w
is changing. The accumulated history can detect

flat plains and steep precipices. The most popular optimizer for updating weights,
ADAM, is a member of the momentum family, and we will trace its develop-
ment by first presenting some of its important precursors to understand how
it works.
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5.4.1 AdaGrad and RMSProp

In 2011, Duchi et al. described a form of momentum adapted to training ANNs
that was very simple, but had some very desirable properties (35). They called
it AdaGrad, which stands for Adaptive Gradient. The fundamental problem for
an update strategy is to adaptively choose a step size dynamically that accounts
for the local curvature. RPROP+ throws caution to the wind and adopts the
mantra: always accelerate. A more refined approach is to employ a heuristic
to capture the local curvature. When the curvature is high, the gradient is
steep, and small steps are indicated, otherwise large steps are required. The
gradient is computed as usual, but AdaGrad scales the weight update as shown in
Algorithm 5.4.

Algorithm 5.4 AdaGrad Weight Update Strategy
1: procedure ADAGRAD

2: Δt ← 𝜕Lt

𝜕w

3: Δt
sq ← Δt−1

sq + Δt ⋅ Δt

4: Δw ← 𝜂 ⋅ Δt√
Δsq+𝜖

5: wt ← wt−1 − Δw
6: end procedure

Every weight requires a variable, the running sum of the square of the gradients.
The final update, Δw, is the scaled gradient. When the gradient is large dividing by
its square attenuates the step size. Small gradients are amplified by the square. 𝜂
is a hyper-parameter, a learning rate, and 𝜖 is a small number to avoid division by
zero. AdaGrad does well early in training, but Δsq grows monotonically and can
quickly lead to low rates of convergence. If good weights are not trained prior to
the inevitable immobility, then training has to be restarted; ideally, the Δsq can just
be reset. The momentum variable, Δsq, needs a decaying factor. This problem was
addressed by RMSProp.

RMSProp appeared soon after AdaGrad in 2012 (150). It recognized the need
for a decay factor to ensure progress throughout training. This was effected by
introducing another hyper-parameter, 𝜌, that decays the history over time. 𝜌
should be a positive value less than unity. The choice of 𝜌 and 𝜂 will depend on
the model being trained, and usually some experimentation is required to identify
good values. RMSProp is presented in Algorithm 5.5. The algorithm is the same
as AdaGrad except for the introduction of a hyperparameter. The additions are in
shaded.
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Algorithm 5.5 RMSProp Weight Update Strategy
1: procedure RMSPROP

2: Δt ← 𝜕Lt

𝜕w

3: Δt
sq ← (1 − 𝜌)Δt−1

sq + 𝜌(Δt ⋅ Δt)

4: Δw ← 𝜂 ⋅ Δt√
Δsq+𝜖

5: wt ← wt−1 − Δw
6: end procedure

RMSProp was a good improvement, but it still left a great deal to be desired.
Choosing the hyperparameters can be difficult, the perennial problem in machine
learning, but RMSProp can be used with minibatches and so it is appropriate for
use with SGD.

5.4.2 ADAM

In 2015, a further refinement was developed called ADAM (84). It is an extremely
popular optimizer and possibly the most widely used. ADAM works well with SGD
variants, that is, minibatch schemes, as it scales well to large problems. This makes
ADAM eminently suitable for use with large training sets. The name, ADAM,
is derived from ADAptive Moment estimation. It is based on the idea of using
momentum to choose the step size. ADAM evolved from RMSProp.

ADAM requires two variables per weight. They are its estimations of the first
moment of the gradient (mean) and the estimation of the squared uncentered
second moment (variance). The estimations are used to scale the step size based
on the recent history of the gradient. The ADAM update rule is presented in
Algorithm 5.6.

Algorithm 5.6 ADAM Weight Update Strategy
1: procedure ADAM
2: gt ← 𝜕Lt

𝜕wt

3: mt ← 𝛽1 ⋅ mt−1 + (1 − 𝛽1) ⋅ gt

4: vt ← 𝛽2 ⋅ vt−1 + (1 − 𝛽2) ⋅ (gt)2

5: m̂ ← mt

1−𝛽 t
1

6: v̂ ← vt

1−𝛽 t
2

7: wt ← wt−1 − 𝛼 ⋅ m̂√
v̂+𝜖

8: end procedure
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The authors recommend values of 𝛼 = 0.001, 𝛽1 = 0.9, 𝛽2 = 0.999, and 𝜖 = 10−8.
The latter is included simply to ensure that there is never a division by zero. The
similarities to RMSProp are evident. The numerator in ADAM’s correction is now
first-order momentum, and both v and m are bias corrected.

It is instructive to compare ADAM to RPROP+ updates. The ADAM update to
the weight, in weight space, isΔwt = −𝛼 ⋅ m̂√

v̂+𝜖
. The authors show that they expect

the common case for the update to respect the bound |Δwt| ≤ 𝛼. Contrast this with
RPROP+ where the upper bound for an update is Δmax , and a value of 50 is recom-
mended, which is 50,000 times larger than the recommended value of 𝛼 = 0.001.
RPROP+ is far more aggressive. Making ADAM efficient generally involves fid-
dling with the 𝛼 hyperparameter.

We compare the distribution of values for the full |Δw| for both ADAM and
RPROP+ for the LeNet5 C5 layer to really observe the dynamics of both heuris-
tics in a realistic setting. The results are depicted in Figure 5.5. The graph makes
clear that the bulk of RPROP+’s updates are orders of magnitude greater than
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Figure 5.5 Computed densities of observed weight updates. Training was initiated with
the same initial values for weights. The x-axis is logarithmic.
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Table 5.2 Comparison of Strategies

Strategy Loss Accuracy (%)

RPROP+ 0.3161 93.94
ADAM 0.6866 84.4

ADAM’s (the x-axis is logarithmic). There is a barrier that ADAM hits that it seems
to want to cross. The wall curve is the effect of 𝛼 on the update size. Modern imple-
mentations of ADAM tend to be more aggressive, and many models using Keras’s
implementation of the ADAM optimizer use a value of 𝛼 = 0.01.

Of course large weight updates are not useful unless they contribute to earlier
convergence. To measure the effect of the larger updates, the losses and accuracy
are presented in Table 5.2. The table was produced with 5 runs for each training
method. Both models were trained for 100 epochs with SGD, and for each of the
5 runs, the models started with the same initial weights. The RPROP+ algorithm
clearly out performed ADAM in this instance. While this is an example where
RPROP+ out-performed ADAM despite theoretical limitations, it must be empha-
sized that LeNet5 is an extremely shallow and simple neural network by today’s
standards of the state of the art1.

While slower than RPROP+, ADAM is steady. When training a network with
RelU activation functions, ADAM is always selected over RPROP+. To avoid the
“dead neuron” effect inherent with RelU, slower training is essential to avoid neu-
ron death; recall that it is not recoverable. RPROP+ can easily shoot into a bad
area, it is designed to, but it needs to recover and as RelU is not forgiving (once a
neuron is dead its derivative is always zero and can never recover). RPROP+ can
kill many neurons with RelU and progress typically comes to a halt well before con-
vergence. RelU (and its variants) are almost always used in the deepest DL models,
and ADAM is the optimizer of choice.

5.5 Levenberg–Marquard Optimization for Neural
Networks

Both ADAM and RPROP+ are examples of first-order methods, that is, they only
rely on the first-order derivatives produced with backpropagation. Both strate-
gies employ heuristics to compute the step size. We saw with Newton’s method

1 LeNet-5 is strictly ordered and comprised of 5 layers. This is small compared to the 20+ layers
with skipping in modern visual classifiers.
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for optimization that there is important information relevant to selecting a step
size in the second derivatives, the curvature, but concluded that the Hessian is
too expensive to compute, much less solve. None the less, like a moth drawn to a
flame, there remains considerable interest in the research community in pursu-
ing second-order methods. To examine the question more concretely, a relatively
simple algorithm is presented in this section. The discussion is really a vehicle for
demonstrating why second-order methods are not currently practical while simul-
taneously demonstrating why people continue to consider them. The method is
called Levenberg–Marquard (LM) optimization.

LM optimization uses approximate second order information to compute an
update. There are a number of choices of quasi “practical” second-order meth-
ods to choose from when deciding which second-order method to discuss, e.g.
Broyden-Fletcher-Goldfarb-Shannon (BFGS) (3) and its variant, L-BFGS (97) (the
L stands for limited memory), but LM methods are simple while demonstrating
the pain/reward trade-off. We follow Hagan’s formulation of the problem (58).

An ANN is a function that accepts an argument, a vector x, and is parameterized
by its weights, w. Training the ANN is the process of determining the weights, so
the parameters are the variables and the training set is constant. Thus, the roles of
arguments and parameters are temporarily reversed during training. To reflect the
temporary rôles, we will write f(w), where f is the ANN, not a loss function. f is a
vector function that accepts the entire training set as an argument and produces a
vector, ŷ, with all of the computed outputs,

ŷ =
⎛⎜⎜⎝

ANN(x1)
⋮

ANN(xN )

⎞⎟⎟⎠ , (5.8)

so we have f (w|x) = ŷ, where x is the parameter, the training set. Let there be N
elements in the training set and M weights to fit in the ANN. The domain and range
of f are then effectively f ∶ ℝM → ℝN during the training of the ANN with LM.

The object of training is to improve the performance of f by iteratively finding
better weights. We can approximate an update to f with a first-order Taylors Series:
f(w + Δw) ≈ f(w) + JΔw, where J is the Jacobean matrix. The Jacobian matrix
comes from the gradient of a function. The ANN Jacobean has the form:

J = ∇Tf =
⎛⎜⎜⎝
∇TANN(x1)

⋮
∇TANN(xN )

⎞⎟⎟⎠ , (5.9)

where the N rows are the results of performing backpropagation on the ANN with
the N elements from the training set. Note that the ANN is differentiated not a
loss function. Let fi = ANN(xi), then the Jacobian matrix is generated over a train-
ing epoch creating a row of M entries of 𝜕fi

𝜕wj
for each of the N training examples.
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For a training set containing N examples, and an ANN with M weights, we obtain
the following Jacobian matrix:

JN,M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜕f1

𝜕w1,1

𝜕f1

𝜕w1,2
· · ·

𝜕f1

𝜕w1,M

𝜕f2

𝜕w2,1

𝜕f2

𝜕w2,2
· · ·

𝜕f2

𝜕w2,M

⋮

𝜕fN

𝜕wN,1

𝜕fN

𝜕wN,2
· · ·

𝜕fN

𝜕wN,M

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.10)

Each row is the per weight error for an example from the training set. Thus, entry
𝜕fi
𝜕w i,j

is the error for weight j at example i from the training set.
Computing the Jacobean also requires a modification to the usual training

epoch. Instead of computing the net gradient by summing the per weight deriva-
tives over the examples, the Jacobean records each derivative individually. The
net gradient for wj is the sum of the jth column in the Jacobean. Both ADAM and
RPROP+ only store the net gradient.

The object for the weight update is to reduce the error with the training set. The
error reduction can be expressed as |f(w + Δw) − y|min , where y is the vector of
the ground truth from the training set, and we are using Euclidean distance. The
method is to solve for the vector Δw by minimizing the residuals. Substituting for
the Taylor series approximation, the following is obtained,

|f(w) + JΔw − y|min = |JΔw − (y − f(w))|min

= |JΔw − (y − ŷ)|min

= |JΔw − r|min , (5.11)

where r is a vector of the residuals (the error). This formulation of the problem
can be solved with least squares. The object is to solve for the vector, Δw. Observe
that r also happens to be the vector of per training example derivatives of the MSE
loss function, 𝜕L

zoutput,i
. The global MSE loss can be computed as 1

2N
rTr. So the matrix

formulation naturally led to the usual regressor framing of the problem.
Constructing the normal equations for least squares leads to,

JT(JΔw − r) = 0 ⟹ JTJΔw = JTr. (5.12)

The canonical approach when dealing with least squares problems is to employ the
QR decomposition. Decomposing the Jacobean and substituting yields the familiar
LS solution:

QR = J ⟹ QTQRΔw = QTr ⟹ RΔw = QTr. (5.13)
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As R is upper-triangular, the answers are obtained by backward substitution. An
enormous advantage of this method is that the matrix JTJ does not even need to
be formed explicitly, it simply disappears; there are also numerical advantages as
well–matrix–matrix multiplication can be numerically unstable. The problem is
that the matrix of gradients, J, is usually very ill conditioned. To tame it the LM
technique can be used. Unfortunately, LM requires JTJ’s explicit formation. The
approach is to shift the spectrum of the Jacobean, which makes it easier to solve.
This is a trust region technique; the local surface area is being approximated lin-
early. The LM method of shifting the spectrum is performed by

JTJ + 𝜆I = K, (5.14)

and the new system,

KΔw = JTr, (5.15)

is solved. The Jacobean’s spectrum has been shifted by the scaler 𝜆. 𝜆 is adjusted
dynamically in response to current stability of the Jacobean during training. One
solace is that a matrix multiplied by its transpose is symmetric so it is only half
the work to produce. A second nice quality of the matrix K is that it is positively
definite and so specialized methods for the solving the matrix can be used.

The LM method works by dialing the 𝜆 factor as needed. The more badly
behaved the Jacobean, the larger 𝜆 grows, and it degrades to gradient descent; this
is inferior to the heuristic methods described thus far as the updates are strictly
proportional to 𝜕L

𝜕w
, with nothing clever to regulate the step size (𝜂 = 1). This can

be seen as

(JTJ + 𝜆I)Δw = JTr ⟹ Δw = (JTJ + 𝜆I)−1 ⋅ JTr. (5.16)

Approximating the inverse of K2 the asymptotic behavior becomes clear, as does
the effectiveness of the method,

Δw = (I − JTJ
𝜆

+ ...) ⋅ JTr, (5.17)

and so as 𝜆→ +∞ the update approaches Δw → JTr, which is gradient ascent
(hence the update is subtracted in Algorithm 5.7). When 𝜆 is small, then the
matrix, JTJ, uses its approximate curvature information to yield a good update.
The entries of look like,

Ji,j =
∑

k

𝜕fi

𝜕wi,k
⋅
𝜕fj

𝜕wk,i
. (5.18)

This is a first-order approximation to the Hessian matrix, and the basis of the
Gauss–Newton method of optimization (31).

2 A Taylor series expansion was used, (B + A)−1 ≈ A−1 - A−1 B A−1 + A−1 B A−1 B A−1 - ...,
where A = 𝜆I.
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Algorithm 5.7 Levenberg-Marquardt Optimization
1: procedure LM STEP

2: for x ∈ Training do
3: 𝐟[i] ← ANN(xi)
4: 𝐉[i, ] ← BPG () ⊳ Computer derivatives for row
5: end for
6: loss ← ∞
7: while loss > CurrentLoss do
8: 𝐊 ← 𝐉T𝐉 + 𝜆𝐈
9: 𝐫 ← 𝐟 − 𝐲

10: Δw ← SolveLinear(𝐊, 𝐫) ⊳ Cholesky decomposition can be used
11: W ← W − Δw
12: for x ∈ Training do
13: 𝐟[i] ← ANN(xi)
14: end for
15: 𝐫 ← 𝐟 − 𝐲
16: loss ← 1

2N
𝐫T𝐫 ⊳ Compute new loss

17: if loss ≥ CurrentLoss then
18:
19: W ← W + Δw ⊳ Backout bad update
20: 𝜆← 𝜆 ⋅ 10 ⊳ Backoff the trust region
21: else
22: 𝜆← 𝜆∕10 ⊳ Dial up the trust region
23: end if
24: end while
25: return loss
26: end procedure

The LM method is very expensive, but it does have some advantages. It is a
global solution. The first-order methods presented thus far compute updates for
each weight in isolation. Consequently, the updates can, and do, interfere and con-
found each other. Solving the matrix is globally optimal and the weights do not
interfere with each other; they have been accounted for by solving the matrix of
simultaneous equations.

There is a cost. First-order methods are 𝒪(M) for both memory and work.
Firstorder methods iterate through the weights, compute the update, and apply
it. The memory required to train with LM is 𝒪(M ⋅ N), the size of the Jacobean.
This quickly gets very large for most ANN problems. In addition to storing, the
Jacobean the LM matrix has to be formed. This is 𝒪(M2) space on top of the
Jacobean’s memory. Forming the LM matrix is 𝒪(M3) in time. It is clear that
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Figure 5.6 Densities of log scale losses of models following training. LM losses are
centered 2–3 orders of magnitude to the left of the first-order methods.

LM resource demands quickly grow onerous. Both memory and time grow very
quickly, so there are very few problems for which LM is appropriate.

Figure 5.6 presents the results of training ANNs to learn sine. The densities of
the final losses for 30 attempts to train an ANN per strategy are depicted. ADAM
and RPROP+ ANNs were trained for 100 epochs. Comparing LM with ADAM and
RPROP+ is potentially problematic. Running LM for 100 epochs would produce
spectacular results, but take far more time. The firstorder methods were used to
calibrate the comparison. The mean CPU time consumed by the resulting com-
bined 60 runs of the first-order methods was used to run LM. Thus, LM training
took the same CPU time, but managed far fewer epochs. The logs of the losses
are presented. LM is orders of magnitude better than the first-order methods. The
experiment is not meant to be misleading. It must be emphasized that sine is a
trivial function to learn. LM it totally impractical for the LeNet-5 experiment in
Table 5.2. Medium sized Deep Learning models have millions of weights. The
space and time requirements of LM render it totally impractical for such prob-
lems. But the dream of such rapid convergence is so promising that researchers
continue to examine second order methods.

5.6 Summary

Backpropagation reliably finds the direction of the correct update, but not the
appropriate size of the step to be taken. The optimal step size is too expensive to
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compute so heuristics are used to compute it. RPROP+ is an extremely fast heuris-
tic, but can present challenges when used with SGD. ADAM is the de rigueur
optimizer used for training Deep Learning models. RelU and its variants are the
activation functions of choice.

5.7 Projects

The projects below rely on notebooks that can be found here, https://github.com/
nom-de-guerre/DDL_book/tree/main/Ch05.

1. The Python notebook sine.ipynb looks for the minimum of sine. It contains an
implementation of ADAM and RPROP+. Implement Newton’s Step. Compare
the heuristics’ step sizes with Newton’s step.

2. The iris classifier iris05.ipynb includes ADAM and RPROP+ optimizers. Plot
loss versus epoch for both RPROP+ and ADAM. Experiment with different
topologies. Is there an important difference?

3. The website includes a handwritten digit classifier, called MNIST05.ipynb. Plot
loss for MNIST for both RPROP+ and ADAM. Do the results differ from the iris
experiment?

https://github.com/nom-de-guerre/DDL_book/tree/main/Ch05
https://github.com/nom-de-guerre/DDL_book/tree/main/Ch05
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6

Convolutional Neural Networks

This chapter presents convolutional neural networks (CNNs). For the purposes
of this chapter, CNN means convolutional neural network, not classifying neural
network. In general, when people use the acronym CNN, it is the former meaning
that is intended, a convolutional neural network. CNNs are often classifiers,
so a CNN can be classifying neural network. When the latter sense is meant,
it is generally written out in full, not as an acronym, to avoid confusion. CNNs
have wide application, often in image recognition, but they have many uses
including in games, generative artificial neural networks (ANNs) and natural
language processing. A CNN is an ANN that includes at least one convolutional
layer. They are used extensively in deep learning (DL) performing many vital
functions in deep neural networks. This chapter motivates the use of convolu-
tional layers, describes their operation inside an ANN, and demonstrates how to
train them.

CNNs were motivated by the observation that cats had neurons dedicated to
fields of vision, that is, they could comprehend sub-regions of an image in parallel.
A cat’s brain divides an image into subimages called receptive fields. The receptive
fields have dedicated neurons. Dedicating neurons to receptive fields produces an
efficient motion detection mechanism. Fukushima was inspired by the biological
use of receptive fields. In 1980, he described how to combine perceptrons with
convolutions to produce a “neocognitron” (43). A neocognitron is a multilayer
neural network and meets the modern definition of “deep learning.” The system
used perceptrons to perform image recognition tasks with convolutions. Another
point of interest is that two modes of training were described, supervised, and
unsupervised. The neocognitron was able to learn and recognize hand-written
digits, but it was arguably the work done in 1989 by Yann LeCun et al. (91) that
set the pattern for modern CNNs. It was the first paper to describe the use of
backpropagation of error to train a CNN. LeCun recognized that introducing

Demystifying Deep Learning: An Introduction to the Mathematics of Neural Networks,
First Edition. Douglas J. Santry.
© 2024 The Institute of Electrical and Electronics
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convolutions simultaneously addressed many problems that were believed to
render ANNs infeasible for practical image recognition.

6.1 Motivation

Images are much larger inputs than the example datasets that have been discussed
thus far. Such large inputs require special handling to efficiently process them.
When performing image recognition, many properties are required. The algorithm
should be shift invariant, that is, it should not matter where precisely an object is
in an image, it should be detected. Images can be large. It is a challenge to both
quickly and reliably recognize items in an image.

Consider a color image with a resolution of 1024 × 1024 × 3. There are 3 colour
channels, one for each of red, green, and blue (RGB). RGB images can be thought
of as 3 images exclusively in one of each of the 3 color channels. An RGB image
is a volume, not an area (2 dimensional grid). Such objects can be encapsulated
in a tensor (the reader is directed to section 12.4 in (49) for a brief introduction).
To invoke an ANN, the example image could naively be construed as a vector
with a length of 3,145,728. Passing such a large vector to a fully connected ANN
would result in an enormous number of weights. An input layer with 100 neu-
rons would require 314,572,900 weights (the additional 100 weights accounts for
the bias). Such a large number of weights present an enormous problem in many
respects. The weights consume space (memory), increase training time, and add
latency when performing inference with the final model. Large numbers of fully
connected neurons with dedicated weights can also generalize poorly as they tend
to overfit during training.

Image classification attempts to look for spatial relationships. If a nose is
detected, then there are probably one or two eyes nearby. A spoon will look
like a spoon no matter where it is located in an image. The Figure 6.1 depicts a
sample of hand-written twos. The examples are taken from the modified National
Institute of Standards and Technology (MNIST) hand-written digit dataset. The
dataset is a combination of two datasets. Both consist of hand-written digits

Figure 6.1 Five examples of hand-written twos from the MNIST dataset. The images are
28× 28× 1 (gray scale). There are no simple rules that define what a two looks like.
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and their labels, but from two separate sources (US Post Office employees and
highschool students). The full MNIST dataset includes a training set of 600,000
digits and a test set consisting of 10,000 digits for a total of 70,000 examples. All
10 digits, 0–9, are represented approximately equally. It was introduced in a paper
describing a very famous DL model, LeNet-5 (92). MNIST digits are convenient to
use as examples as they are relatively small, 28 × 28 × 1, where the 1 denotes that
it is gray-scale, which makes an MNIST digit a 2 dimensional array, not a volume.

The MNIST dataset contains all 10 digits, but we will restrict ourselves to the
twos for the moment. Implementing a model to recognize twos requires learning
what a “2” looks like. A curve implies finding a line in predictable direction, and
vice-versa. A two has defining features that can be recognized, but perhaps are dif-
ficult to specify formally. Moreover, a two is a composite of a number of distinct
features in the image. Humans can recognize them immediately (and they com-
plain about the hand writing if they cannot). The same can be said of all digits and
the Latin alphabet, which is relatively simple when compared to other alphabets
such as the Japanese alphabet. Instead of writing down rules to distinguish the dif-
ferent symbols, it is desirable for an ANN to simply learn how to recognize them.
The techniques that are developed can be used to recognize anything.

6.2 Convolutions and Features

The object of convolutions is to discern features in an image that differentiate
higher order objects in the image. Decomposing an image into features makes, it
easier for a system to distinguish between and recognize macro structures. The
result is a smaller image that contains more useful information. The resulting
image consumes less memory as it is smaller. The memory consumption, how-
ever, tends to go up, not down, as there are usually multiple features produced
in parallel. This results in multiple smaller maps that collectively consume more
space than the original. The information gleaned in the feature maps is worth it
and makes the task of recognition easier.

The pivotal concept at the center of convolutions is the kernel. A kernel is used
by applying it to a submatrix of an input matrix producing a scaler. The scaler
is recorded in a new matrix, the feature map. The kernel is applied repeatedly
to different submatrices in the image. Each application of the kernel produces
a scaler that is stored in the feature map. The feature map contains the feature
that is the result of applying the kernel; what the kernel is looking for. The result
is a new feature map that is smaller than the input. The feature map contains
information about the original matrix that should make interpreting its contents
easier.
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The process starts by applying the kernel to the top-left of the input matrix.
The computation is performed, the result stored, and the kernel is moved along
to the right and the operation repeated with the new submatrix. Applying the ker-
nel and sliding over to the new submatrix are repeated until the end of the image
is reached on the right. At this point, the algorithm returns to the first column
on the left, but slides down. The number of slots to move along (the number of
columns), or the number of rows to move down, is known as the stride. The stride
is one of the hyperparameters of convolutional layers. An example of the process
is shown in Figure 6.2. For clarity of exposition, input matrices and kernels are
assumed square. Neither object is required to be square and in real applications
are frequently not. MNIST images are square.

To be useful, the kernel should extract meaningful information from the original
image. One means of identifying features is to hardcode some masks and use them
as kernels. By applying masks to an image, it is possible to identify vertical lines,
horizontal lines, and diagonals. Each mask produces a feature, and applying them
to the original image decomposes the image in a different way with respect to the
feature. The masks can be interpreted as filters. The mask looking for vertical lines
is filtering the image with respect to vertical lines. The matrices in Eq. (6.1) are
examples of filters. Applying all 4 masks produces 4 separate feature maps. The
idea is that patterns associated with digits will emerge. Comparing feature maps,
intradigit should find similarities, and comparing feature maps interdigit should
identify differences. Assuming a kernel size of 3 × 3, the following constitute the

Figure 6.2 The repeated application of a kernel to produce a feature map. The kernel is
applied to every submatrix resulting from traversing the image by the stride. The 28 × 28
MNIST image is convolved to a 26 × 26 image produced from the 26 × 26 convolutions
resulting from a stride of 1.
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masks required:

khor =
⎛⎜⎜⎜⎝
0 0 0
1 1 1
0 0 0

⎞⎟⎟⎟⎠ ,

kver =
⎛⎜⎜⎜⎝
0 1 0
0 1 0
0 1 0

⎞⎟⎟⎟⎠ ,

kdTop =
⎛⎜⎜⎜⎝
1 0 0
0 1 0
0 0 1

⎞⎟⎟⎟⎠ ,

kdBot =
⎛⎜⎜⎜⎝
0 0 1
0 1 0
1 0 0

⎞⎟⎟⎟⎠ . (6.1)

The convolution consists of taking a mask, e.g. khor , and element-wise applying
a binary operator logically, the not exclusive or (NXOR). The kernel is applied to
a submatrix from the image of the same dimensions as the kernel (3 × 3). The
truth table for NXOR is 1 if both arguments are nonzero or if both arguments are
zero, that is, both arguments agree. It is zero if the arguments disagree. Applying
the mask yields 9 values as there are 9 binary operations between the mask and
the submatrix. To produce the final scaler, the results are summed; a value of 9 is
a perfect match, 0 connotes a complete difference. The kernel is summarizing a
submatrix with a scaler, that is,

kernel ∶ ℝ3×3 → ℝ. (6.2)

The resulting kernel is

rows∑
i=1

columns∑
j=1

ki,j ⊙ submi,j. (6.3)

The procedure is repeated until all of the submatrices in the image have been pro-
cessed and the feature matrix is filled.

Figure 6.2 graphically depicts the process for an example MNIST “2”. An MNIST
image is a 28 × 28 grayscale matrix. The mask is 3 × 3, with a stride of 1. As the
stride is 1, the convolution moves over one column following each computation.
Once the last column is reached, computation returns to first column, but moves
down a row. A stride of 1 creates a great many overlapping convolutions decreasing
the chance of “missing something” in the image; the kernel is looking for spatial
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relationships. The cost is a bigger feature map. The number of rows in the fea-
ture matrix is Imrows − krows + 1 = 28 − 3 + 1 = 26. As all objects are square in this
example, the resulting feature matrix is 26 × 26. There are 4 masks defined in (6.1)
leading to 4 feature maps, each 26 × 26. The output is therefore 4 × 26 × 26 × 1.
In general, a feature matrix will have dimension,

Imrows − krows

s
+ 1, (6.4)

where s is the stride. In the case of asymmetric kernels or images, then the column
width will have to be computed as well.

Note that not all elements in the original image participate in an equal number
of times in the convolutions. As described, the pixel in the top right corner, and
the top left, each participated in only a single kernel application. The pixels in
the center of the top row will contribute to 3 calculations. If there is something
important on the edges of the images, then this may not be desirable. Images can
be padded to increase the inclusion rate. In the case of an MNIST digit, a 28 × 28
image can have zeros added around the edges depending on the desired level of
padding. A 28 × 28 image can be padded to produce a 29 × 29 or a 30 × 30 image,
whatever is required. To produce a 29 × 29 padded image, a row is added to the
top and bottom, and a column is prepended and appended to the left and right of
the image. The original image is at the center of the padded image. The paddings
increase the number of times the edges participate, and the convolutions and the
edges receive the full benefit of the kernels. A classifier training to learn the MNIST
dataset does not need padding, and the images are centered. Not all applications
are so well behaved though. Domain knowledge is required to make a sensible
determination.

The results of applying the masks to an MNIST “2” are displayed in Figure 6.3.
The left-most image is the original input image of a “2”. The remaining images to
the right are the feature maps resulting from applying the masks in order of their
definition in Eq. (6.1). The darker colors are higher numbers, so closer matches
to the kernel. Visual inspection of the results suggests that they are sensitive to

Figure 6.3 The result of applying the kernels in (6.1) to detect features. The original
hand-written two is on the left. The result of applying the masks are in order from left to
right. The stride is 1 which results in 28 × 28 images convolving to 26 × 26.
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a number of factors. The masks are looking for patterns that are a single pixel
in width. The example “2” does not restrict itself to single pixel width anywhere.
Despite that, some feature definition has emerged. Once computed, the feature
maps are ready for use with the bottom of the classifier, a FFFC ANN.

With the features computed, they can be further processed by a fully connected
ANN. Construing the 4 features as a single, albeit long, vector the features can
be passed into the deeper ANN. The feature vector is 4 × 26 × 26 = 2704 elements
long. While this is far larger than the 28 × 28 = 784 long vector that would result
from starting with the original image, it is far more information rich. The impor-
tant differences between a “3” and an “8” are easier to discern in the feature matri-
ces than the original image. The structural differences emerge more distinctly.

The CNN described is a big improvement on a naive classifying ANN. A num-
ber of questions, do, however, immediately suggest themselves. Do the masks that
were defined make sense for digits? Are there better kernels that could be used?
Ideally, the masks would be well suited to the problem domain. What if more
than 4 feature maps are desired? Conceiving bitmasks for use with convolutions
is clearly not ideal, and there are only so many sensible masks that suggest them-
selves. If possible the features should be automatically created during training, not
hardcoded a priori. Learned features increase the number of possible useful fea-
tures as the onus is placed on the CNN to find them, not the human. Features that
are learnt would also be well suited to the problem domain as the features were
learnt from the training set, the definition of the problem domain.

6.3 Filters

The above agruments suggest that a desideratum for the kernels is that they are
learnt. If kernels are learnt, then domain-specific kernels will result yielding better
feature maps. In addition, the number of features is constrained by the needs of
the model, not by how many masks can be dreamt up by a human.

The perceptron makes an excellent kernel. A perceptron employed as a kernel
is known as a filter. Some of its advantages as a kernel include that the perceptron
is well understood, including how to train it. A perceptron accepts multiple inputs
and produces a scaler, precisely what is required for a kernel. The weights of a
perceptron can be used for the values in a mask. Weights are learnt leading nat-
urally to learned features. A 3 × 3 kernel can be implemented with a perceptron
with 9 weights, and in general a krows × kcolumns kernel can be implemented with
krows ⋅ kcolumns weights (and a bias). Perceptron weights are usually numbered lin-
early and construed as a vector. This follows from designing them to accept vector
arguments in an ANN. The vector interpretation also makes it convenient to imple-
ment perceptrons as a row in a weight matrix for a layer. Kernels are small matrices
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so a means of converting a perceptron’s weights to a matrix is indicated. A matrix
interpretation can be effected by construing the sequentially ordered weights as
a row-order matrix. The weights are mapped unambiguously to a matrix. The
following example illustrates the scheme for a 3 × 3 kernel:

{w0,w1,w2,w3,w4,w5,w6,w7,w8} →

⎛⎜⎜⎜⎝
w0 w1 w2

w3 w4 w5

w6 w7 w8

⎞⎟⎟⎟⎠ (6.5)

Arranging the weights in a matrix produces a kernel of the correct dimensions,
but the kernel must produce a scaler. Matrix multiplication produces a matrix. A
scaler is obtained with an extension of the vector dot product, known as the inner
product, used by perceptrons. The dot product for a pair of matrices of the same
dimension is known as a Frobenius product. The Frobenius dot product is similar
to a Hadamard operation except that the final result is a scaler as the results are
summed. The Frobenius dot product for a filter and a submatrix is defined as:

F(f , subm) =
rows∑

i

columns∑
j

wi,j ⋅ submi,j, (6.6)

where f is a filter (perceptron), and subm is the submatrix. The Frobenius prod-
uct is a natural extension of how a perceptron computed its intermediate state,
u, in an ANN; the dot product of its inputs with its weights. Once the Frobenius
product has been computed, the perceptron applies its activation function to pro-
duce the final result. The final expression for the scaler produced by a perceptron
is 𝜎(F); this is the filter kernel. The result is stored in the feature map. Modern
DL CNNs typically use the RelU activation function for the reasons outlined in
Section 3.5.4. It is interesting to note that Fukushima introduced the RelU activa-
tion function when describing his cognitron in 1975 (42), but he did not use it in
the neocognitron with convolutions (Figure 6.4).

Im0,0 Im0,1 Im0,2

σ(w0,0 · Im0,0+w0,1 · Im0,1+w1,0 · Im1,0+w1,1 · Im1,1) σ(w0,0 · Im0,1+w0,1 · Im0,2+w1,0 ·Im1,1+w1,1 · Im1,2)

σ(w0,0 · Im1,1+w0,1 · Im1,2+w1,0 ·Im2,1+w1,1 · Im2,2)σ(w0,0 · Im1,0+w0,1 · Im1,1+w1,0 · Im2,0+w1,1 · Im2,1)

Im1,0 Im1,1 Im1,2

Im2,0 Im2,1 Im2,2

Figure 6.4 The figure depicts a 3 × 3 image and the feature map that results following
the application of a 2 × 2 kernel when a stride of 1 is used. The 3 × 3 image convolves to
a 2 × 2 feature map. The shaded elements in the submatrix on the left are used in the
highlighted element in the feature map on the right. The kernel is depicted with a
general activation function, 𝜎, but it is usual to use RelU.
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To produce the feature map, the filter (perceptron kernel) is applied to each sub-
matrix as described above with naive masks. A feature map is produced per filter,
and the number of filters corresponds to the number of the desired features. The
number of filters required is specified as a hyperparameter of the model.

Typically, multiple filters are applied in parallel in one layer of a CNN. The result
is multiple feature maps produced from a layer of filters. Continuing with the
MNIST example (3 × 3 kernel, stride 1), the input for the filter layer is 28 × 28, and
assuming 5 filters the output would be 5 × 26 × 26. Once the feature maps have
been computed, they can be passed on to a fully connected ANN. Fully connected
ANNs expect vectors, and the output of the filter is the wrong shape. Prior to pass-
ing the feature maps to the ANN classifier, they must be flattened. Flattening is
the process of changing the higher order (complicated) shape to a vector. Follow-
ing with the MNIST example, the 5 × 26 × 26 tensor is flattened to a 3380 element
vector. The vector is the shape expected by an ANN’s input layer. It should be noted
that a good implementation will not perform any copying of data, but merely rein-
terpret the memory occupied by the tensor. Flattening is not to be confused with
concatenation. Concatenation is the operation of fusing, or synthesizing, multiple
tensors of the same underlying shape. For example, concatenating a 3 × 20 × 20
tensor with a 4 × 20 × 20 tensor results in a 7 × 20 × 20 tensor. It is a very different
operation (and almost certainly will involve copying data).

An important interpretation of filters is that of a regularized perceptron. A
feature map has a single perceptron processing an input image of many pixels.
In other words, convolutions are a form of regularization as they are kernels
providing shared weights between two layers. This is described in the section on
regularization (Section 7.4). All of the entries in a feature map share the same
weights. In consequence, overfitting is far less likely and filters generalize well.
Filters extract features learnt from the problem domain; they are learnt during
training. It is clear that filters simultaneously perform two important rôles, they
regularize the network and automatically perform quality feature extraction.
LeCun et al. recognized the utility of perceptrons as filters. It was this insight that
motivated them to train perceptrons as filters with backpropagation of error in a
CNN (91). The arguments remain valid today, and these are the reasons for their
continued widespread use.

6.4 Pooling

In a typical CNN, multiple filters are used in parallel in a layer resulting in a corre-
sponding number of feature maps. At this point, the feature maps can be flattened
and passed to an ANN, but the resulting vector is rather large (usually much larger
than the original image). The feature maps need to be condensed to make them
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smaller while retaining as much feature information as possible. A useful means
of doing so is pooling (122; 134).

The scheme presented here is a convolution called maxpooling (also commonly
referred to simply as pooling). The technique is to interpose a pooling layer
between a filter layer and a flattening layer. Pooling performs subsampling
and condenses the feature information in the feature maps creating new maps.
Maxpooling works by summarizing a submatrix with a scaler: the maximum
element the submatrix. An example of maxpooling is

argmax
ai,j

⎛⎜⎜⎜⎝
1 2 2

3 5 1

7 4 1

⎞⎟⎟⎟⎠ = 7. (6.7)

It is common to place a maxpooling layer after the first filter layer in a network.
The first layer accepts the input image and is therefore the largest. Maxpooling
is expected to select the most important aspects of the filter’s feature maps. Just
like any convolutional kernel, it is applied to the submatrices of an input matrix
producing a new result matrix. Every feature map accepted as input is pooled to
produce a corresponding output pooled map. The pooled matrices can then be
flattened and passed on to a fully connected ANN.

The width of the kernel and the stride are independent hyperparameters of a
pooling layer, but the number of result matrices is dictated by the earlier layer.
The hyperparameters of both the filter and the pooling layers are often considered
together as there is often a target output size, but the resulting pair of hyperparam-
eters are usually different (e.g. a filtering layer with a stride of 1 and kernel width
of 5 followed by a pooling layer with a stride of 2 and a width of 2). The number
of maxpooling maps is dictated by its input layer.

6.5 Feature Layers

With convolutions defined the pieces can be assembled to produce the whole:
a CNN. There are 3 hyperparameters defining a convolutional layer with filters.
They are the number of the filters (feature maps), the stride, and the dimensions
of the filter. The immediately following maxpooling layer, if present, is only free
to use different strides and kernel width. For maxpooling layers, the number of
output maps is determined by the number of input maps.

It is common to place a pooling layer following the first filter layer in a CNN.
Figure 6.5 presents a CNN to classify MNIST digits. The FCFF ANN portion of the
model could be quite small, for this example {50, 50, 10} would work well. The
convolutional layers of the CNN can be known as the features portion of the CNN,
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but in modern DL CNNs the distinction is blurred. There can be many filters, and
the number of filters, and the number of filter layers, is dictated by the application.
The MNIST dataset is a trivial dataset by modern standards, but more challenging
images such as those produced by the camera of a mobile phone would require a
deeper network. This would include more filter layers, not just a wider filter layer
at the top.

It is useful to examine the output of the individual layers to understand what
is happening inside the CNN (168). This can be invaluable when debugging.
The Figure 6.6 presents the outputs of the convolutional layers of the CNN in
Figure 6.5. It was trained to learn the MNIST dataset. The input image was
deconstructed into 5 features followed by 5 pooling layers. Problem domain filters
have learnt how to recognize features, and maxpooling has summarized the
features and the deeper fully connected ANN has an easier job to do.

When considering and designing CNNs, it is helpful to think in terms of the
shapes of the tensors. The CNN can be viewed as a pipeline. Data starts at the
top and exits at the bottom. In the case of a classifying ANN, the bottom is a soft-
max layer producing the prediction. Layer after layer shapes and passes on the
image. Figure 6.5 depicts the pipeline 28 × 28 → 5 × 26 × 26 → 5 × 13 × 13 → 845.
The 5 final maxpool maps are flattened to produce a vector of 169 × 5 = 845 ele-
ments. 845 is slightly larger than the original 784 vector, but it is packed full of
information.

28x28x1 5x26x26x1

filter0

filter1

filter2

filter3

filter4

pool0

pool1

pool2 flatten

Features

pool3

pool4

5x13x13x1 845

0,
1,
2,
3,
4,
5,
6,
7,
8,
9

FCFF
ANN

Figure 6.5 An example of a complete CNN. The CNN is a classifier that accepts
examples from the MNIST dataset. The shapes of each layer are inscribed above the
layers. There are 5 filters, which each receive a complete copy of the digit, followed by a
pooling layer. The strides are 1 and 2, respectively.
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Figure 6.6 The top row is the result of applying a set of 5 filters to an example “6” from
the MNIST dataset. The bottom row presents the result of applying a Maxpool layer to
the result. The pipeline is as described in the text.

Convolutions are almost synonymous with DL. The example CNN in Figure 6.5
is trivial by modern standards. A single layer of filters can learn MNIST. The
pipeline can be much deeper and include many layers of filters. A more chal-
lenging problem would require a deeper CNN. The shallower filters identify
useful features and the deeper filters learn compositions of the trivial features.
As the CNN gets deeper, the filters learn more complicated artifacts built on the
earlier decompositions. The output of filters can be flattened and used as input
to a deeper filter layer. A CNN’s architecture is dictated by the application, and
the shallowest possible should be used. The efficient use of GPUs to train CNNs
described in AlexNet (89) set off a race for deeper and wider CNNs. Modern
deep networks can have over 22 convolutional layers. Examples include the
Googlenet (148) and VGGx (140) networks. Training such large systems requires
GPUs and experience. Propagating an accurate gradient so far backward is
challenging and prone to disappearing (become zero).

The deepest networks often include a macro structure built with multiple layers
to perform a specific job. Googlenet introduced the inception module. An inception
module combines multiple layers that were designed together to solve a problem.
One of the hyperparameters of a filter is the kernel width. An inception module
includes a filter layer of multiple filter widths. This is far more challenging than it
first appears. The final step of an inception module is to ensure that a consistent
shape is passed on (usually with concatenation). The power of the module is that
it introduces an element of size invariance in the pipeline. Inceptions module have
the capacity to detect an object, e.g. an apple, no matter what size it is when the
object is present in an image.

The difficulty and resources required to train DL models have led to the trend
of making pretrained models available. An application developer can simply
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download an appropriate pretrained model and incorporate it in their CNN.
The pretrained model can be specialized by appending some appropriate layers
and then training. Generally, only the new layers are trained, and the pretrained
model is frozen. The result is a specialized model appropriate for the application.
The required training to specialize is usually trivial compared to training the full
model.

6.6 Training a CNN

The training of convolutional layers is based entirely on backpropagation of error.
There is nothing in particular that makes convolutional layers challenging to
incorporate in a backpropagation scheme. Mathematically, filters and pooling
are straight forward. Filters are merely perceptrons, and it has been shown how
to train them earlier in Section 3.5. Consequently, both types of layers can be
dropped in to a general backpropagation framework. There are, however, some
nonmathematical considerations respecting the implementation of the layers.
Recall that the CNN can be divided into two distinct pieces, they are the features
portion of the network and the fully connected ANN that performs classification.
The feature layer is shallower in the network, on top of the classifying ANN.
Using the example CNN in Figure 6.5, the task of this section is to expatiate the
flow of the gradient through the features section of the network.

The inceptive of step of backpropagation for a CNN is the same as for an ANN;
moreover, it is the ANN that is responsible for it: the computation of the loss func-
tion. The error is computed normally for a classifier as described in Section 4.2.
Backpropagation of the error then takes place up to the interface between the
features section of CNN and the fully connected ANN. The weights in the fully
connected ANN are updated as usual. The shallowest layer of the fully connected
ANN contains deltas, 𝛿, and the gradient must cross into the features portion of
the CNN. The first layer encountered is the flattening layer. What is now required
is an algorithm to perform the backpropagation through the 3 layers, in order of
backpropagation: flatten, pooling, and filter.

6.6.1 Flatten and the Gradient

Gradient flow through the flattening layer is trivial reflecting its simple job. To
begin recall that the 𝛿s in the fully connected layer are

𝛿i =
𝜕L
𝜕ui

(6.8)

and these are the basis of propagating the gradient across layers in a fully
connected ANN. There are no trainable parameters in the flattening layer. The
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flattening layer simply reshapes the multiple objects of its input into a single
output vector. When transmitting the gradient, it simply does the reverse. The
gradient, which is flat when emerges from the ANN, is reshaped to fit the shape
the flatten layer expects from its input feature maps. The only task then is to
transmit the gradient through the flattening layer. Perceptrons inside of the
classifying fully connected ANN propagate the gradient across layers by

𝜙𝓁 = 𝜕L
𝜕z𝓁

= W T
𝓁+1 ⋅ 𝛿𝓁+1, (6.9)

where z𝓁 is the output vector of the flattening layer, 𝓁, and 𝜙𝓁 is the gradient arriv-
ing at the flattening layer, 𝓁. The only work to be done by the flattening layer is
reshape 𝜙𝓁 to fit the expected input shape. As there are no trainable parameters
in the flattening layer, or inflective operations performed on the data, the flatten-
ing layer has no effect on the gradient. The gradient is simply transmitted through
to be consumed by the immediately shallower layer in the correct shape. Refer-
ring back to the example of the CNN depicted in Figure 6.5, 𝜙𝓁 is a vector of 845
elements. It is reshaped to 5 × 13 × 13 and then propagated backward.

6.6.2 Pooling and the Gradient

Gradients arriving at the pooling layer are expected to be in the same shape as the
output. For every element in the pooling layer’s result matrix, there will be an entry
in the gradient map. The example pooling layer in the Figure 6.5 has a 5 × 13 × 13
output shape. Consequently, the gradient will also have the same shape when it
arrives, 5 × 13 × 13. Once the gradient arrives at a pooling layer, it must be passed
through. The gradient that emerges from a pooling layer will have the same shape
as its input. Backpropagation will ensure that the 5 × 13 × 13 gradient is passed on
to the 5 × 26 × 26 input shape that it received. Every element in the input set to the
pooling layer must have a value for the gradient flowing back through it. A pooling
layer does not have any learnable parameters so no updates are required inside the
pooling layer. The pooling does, however, perform an operation on its input. The
effects of the operation must be reflected in the gradient that flows through.

The kernel for maxpooling is max(subm). The gradient must be passed through
the kernel so the derivative of max is required. The max function is not continuous,
so it is not differentiable everywhere, but it is differentiable. Let 𝛼 = max(subm).
Then 𝛼 is the result of the application of the pooling kernel. Using the definition
of a derivative, the gradient can be computed for the max function at that point:

dmax
d subm

= lim
h→0

max(subm + h) − max(subm)
h

= lim
h→0

𝛼 + h − 𝛼
h

= 1. (6.10)

Equation (6.10) is the key to passing the gradient through a pooling layer. A
similar argument with the limit approaching from the other side yields the same,
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Figure 6.7 An example of a pooling layer in a forward training pass and the resulting
backpropagation of error. The 3 × 3 input image is pooled with a 2 × 2 kernel and a stride
of 1, convolving to a 2 × 2 feature map. The ANN computes and propagates the gradient
as usual until it reaches the flattening layer. The gradient is reshaped and passed on to
the pooling layer. The pooling layer assigns the gradient based on the results of the
forward pass (the maxima).

defined, result. Thus we conclude that the derivative for max is defined and equal
to either 1 or 0; 1 for the max and zero for all the other arguments. This is intuitive
as the arguments that are not the maximum have no effect on the downstream
computations. For a pooling layer, 𝓁, 𝜙𝓁 = 𝜕L

𝜕z𝓁
is passed back to the maxima and

is zero for all other arguments. A pooling layer does not contain any trainable
parameters so it merely passes the gradient through, albeit selectively, similarly
to the flattening layer. The gradient has the same shape as the input, so the gra-
dient emanating from the pooling layer in Figure 6.5 would be a tensor of shape
5 × 26 × 26.

Mathematically pooling layers do not present any challenges to backpropaga-
tion. A pooling layer does, however, require some bookkeeping during training.
When computing the maxima for the feature map, a pooling layer needs to record
which ai,j produced maxima so that the gradient can be passed back efficiently. In
the event of a tie, for example, the background of an image, the gradient should
be split equally among all of the inputs in the submatrix. This is not always done
and should not be assumed when using third-party libraries (Figure 6.7).

6.6.3 Filters and the Gradient

Filters differ from the previous two layers in an important way. Filters have learn-
able parameters, they are perceptrons, and so they require updating in addition to
transmission of the gradient. There is, however, an important difference between
perceptrons in dense layers and a filter. The perceptrons encountered so far are
in a fully connected layer with dedicated weights. Filters are more complicated as
the weights are shared. The weight’s loss in a dense layers is computed as

𝜕L
𝜕wi

= 𝜕u
𝜕wi

⋅
𝜕L
𝜕u

= zi ⋅ 𝛿 (6.11)



�

� �

�

126 6 Convolutional Neural Networks

There is a one to one relationship between a perceptron’s weight, wi, and the
input zi. The 1:1 relationship permitted the use of Eq. (3.39), a standard matrix
product. A filter’s weights are not dedicated, and they are shared with several
incoming values. There are multiple zj for the wi in a filter. There is a further
complication in that there is also more than one 𝛿 per weight in a filter. Every
entry in the feature map will produce its own 𝛿. The u in Eq. (6.11) is the single
vector dot product of the weights and the input, but in a filter it is one of many
Frobenius products. Again, one for each entry in the feature map. Indeed, all the
terms in red are assumed to have one value in the pure perceptron context, but
they have multiple values in the filter setting and must be accounted for in an
updated scheme. Equation (6.11) must be modified before it can be used with a
filter.

The shared weights of a filter require a change to Eq. (6.11). The plan is to break
up the problem into two pieces. To begin the set of 𝛿s are computed, then the
final weight update is computed. To arrive at the correct form of loss equation,
the feature map must be examined. The filter is producing a map, not just a single
value, and an entry in a feature map is computed as

zi,j ≡ Oi,j = 𝜎(F(f , submi,j)). (6.12)

The computation is not different from the dense perceptron per se, and it is simply
applied repeatedly to many permutations of the inputs producing many distinct
results. This is reflected in the indexing. Instead of a single result, there is a map of
them. To propagate the gradient backward simply requires doing the same thing,
but in reverse. This will produce a map of 𝛿s that can in turn be used to compute
the losses. The immediately deeper layer,𝓁+ 1, propagates the gradient in the form
of a map. The gradient is a correctly shaped tensor containing the 𝜕L

𝜕Oi,j
s, and these

are used to calculate the 𝛿s. The 𝛿s are computed by multiplying them with the
derivative of the activation function.

𝛿i,j =
𝜕L
𝜕Oi,j

⋅
𝜕Oi,j

𝜕Fi,j
. (6.13)

Figure 6.8 demonstrates the flow. It continues from the pooling example. The gen-
eral form of activation derivative is shown, but in practice the activation is usually
RelU. With the table of 𝛿s computed, the final weight updates can described.

The shared weights of the filter produced a map of results consequently the gra-
dient must flow back through each entry to the weights. The loss for a weight is
computed by applying Eq. (6.11) repeatedly, once for each dot product the weight
participated in to produce the map. The total derivative for a weight is the sum
over all the losses resulting from all of the convolutions that it produced,

𝜕L
𝜕wm

=
convolutions∑

i,j
xp,k ⋅ 𝛿i,j. (6.14)
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Figure 6.8 Backpropagation from a pooling layer to a filter. The filter gradient table is
simply the Maxpooling gradient renamed (relabeled). The gradient is used to compute
the 𝛿s producing a 𝛿 for each instance of weight sharing (convolution). In this example,
only 3 of the 𝛿s are nonzero, the blue ones.

∂L

δ

∂w1,1

= F

Input image

•

δ
Input image

•...
∂L

∂w2,2

= F

Figure 6.9 Some example weight updates in a filter. A weight accumulates the loss for
every element in the feature map that it participated in. This can in turn be computed as
a Frobenius product between the table of 𝛿s and the submatrix of the input image that
the weight touched. The kernel is 2 × 2 and the stride is 2.

Note that xp,k has different indexing, it the argument from the input map that pro-
duced the convolution. This equation can be expressed as a Frobenius product
between the input image and the map of 𝛿s. The Frobenius product is computed
for each weight in the filter. The submatrix of the input image changes to match
those elements that the weight touched when computing the feature map. The
process is depicted graphically in Figure 6.9.

For the example in Figure 6.5, the backpropagation would be terminated at this
point, but it is a trivial example with a single feature layer. State-of-the-art DL
CNNs have many filter layers. It follows that the gradient must be transmitted
through a filter to shallower layers. The dedicated weight form of interlayer gradi-
ent passage is Eq. (6.9). Not only are the weights shared in a filter but the elements
of the input are as well. It is clear that the gradient propagation equation must also
be emended to deal with convolutions.

The same strategy that was employed for derivatives of filter weights can also be
used for the gradient’s passage. For a particular point in the input image, the total
gradient is accumulated by summing all of the losses emanating from the con-
volutions in which it participated. The actual computation is similar to the filter
weights. Instead of a single computation, the dedicated weight version is applied
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repeatedly. The result will be a gradient in the same shape as the layer’s input.

𝜕L
xp,k

=
convolutions∑

i,j
𝛿i,j ⋅ wk. (6.15)

The maximum length of a sum for any point in the transmitted gradient is the ker-
nel width squared. The computation itself can also be expressed as a Frobenius
product. Equation (6.15) is the Frobenius of the filter with the 𝛿 map correspond-
ing with the convolutions in which the pixel participated. Prior to use the filter’s
matrix must be reversed. This is because the input map’s elements interact with
the filter in the reverse order. An input element can participate in at most filter
size number of convolutions. If an element contributes to the maximum number,
then it is in the order starting from wn−1 in reverse order to w0. To reflect the order
of usage, the filter matrix must be reversed, not just transposed, as the diagonal
needs to change as well.

filter =
⎛⎜⎜⎜⎝
w0 w1 w2

w3 w4 w5

w6 w7 w8

⎞⎟⎟⎟⎠ ⟹ filterBPG

⎛⎜⎜⎜⎝
w8 w7 w6

w5 w4 w3

w2 w1 w0

⎞⎟⎟⎟⎠ (6.16)

To propagate the error to a shallower layer, a map of the same dimensions as the
input is built containing the gradient. The complete prodecure is presented in
Algorithm 6.1.

A filter layer may have either a 1:1 relationship with its input, or a 1:many.
This exposes a potential dichotomy of two cases respecting the input shape. The
example in Figure 6.5 is 1:many. The single input image produces many feature
maps. A filter can also accept a number of maps producing a 1:1 relationship. Both
cases are handled the same way despite the superficial appearance of a complica-
tion. The gradient needs to flow through each element of the input shape, that is,
the total gradient of any convolutions that involved the element needs to be accu-
mulated, regardless of the shape of the input. In the case of 1:1, then gradient has
the shape nFilters × rows × columns. 1:many simply sums the individual gradient
maps to produce the correct shape (and gradient).

The implementation of a convolutional layer must include 3 functions. The layer
implements a forward pass, the application of a kernel. It must also include sup-
port for a backward pass. The backward pass must update learnable parameters as
well as propagating the gradient through it. Any layer that implements this func-
tionality can be dropped in to a CNN library. The importance of designing a flexible
API is clear. New convolutional layers must implement the API to be used in a soft-
ware library. The API should make it easy for new convolutions to be implemented
without having to make changes in the rest of the library. Verifying the shapes of
the data going between the layers is vital to ensure bugs are caught early.
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Algorithm 6.1 Push a Gradient Through a Filter
1: procedure ACCEPTGRADIENT(G𝓁+1) ⊳ Accepts deeper gradient
2: for f in filters and G in G𝓁+1 do ⊳ Performed per feature in layer
3: for 𝖥𝗂,𝗃 in f.map do
4: 𝛿i,j ← Gi,j ⋅

𝜕O
𝜕𝖥i,j

⊳ Derivative depends on activation fn used
5: end for ⊳ 𝛿 is a map
6: PropagateToFilter (𝛿, f)
7: ⊳ Concatenate or sum, depending on input shape
8: G𝓁 .append (ComputeGradient (𝛿, f))
9: end for

10: return G𝓁 ⊳ return the gradient
11: end procedure
12: procedure PROPAGATETOFILTER(𝛿, f)
13: for wi in f.weights do
14: Δwi += 𝖥(𝛿, Im, i)
15: end for
16: end procedure
17: procedure COMPUTEGRADIENT(𝛿, f)
18: G ← ∅
19: filterBPG ← 𝖱𝖾𝗏𝖾𝗋𝗌𝖾(filter)
20: for xi,j in Im do
21: Gi, j ← 𝖥(i, j, 𝛿,filterBPG) ⊳ Must account for padding
22: end for
23: return G
24: end procedure

6.7 Applications

CNNs have many applications. Their origins lie in image recognition, but their
power extends far beyond that field. Convolutions are adept at dealing with
shift-invariant data that is also quasi-translation invariant. The world abounds
with such problems. The following rules of thumb should be considered when
designing a model:

1. 1-dimensional convolutions are useful when performing signal processing.
Some examples are text and sound. Text can be a natural language processing
problem (see Section 9.4.1 ). Sound can be music, speech – there are many
more.
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2. 2-dimensional convolutions should be considered when dealing with any kind
of grid data. As has been demonstrated, images are of particular importance.
This includes object detection and recognition tasks.

3. 3-dimensional convolutions should be considered when working with video
and volumetric data. Video can be viewed as a string of 2-dimensional
images; video can be dealt with convolutional tensors. Volumetric data is a
3-dimensional image; a data point (x, y, z,w(= RGB)). The value specified at
the point is often an RGB color. Mineral search, such as geological surveys,
commissioned searching for oil produce volumetric data. Medical imaging
is an application where CNNs have proved immensely successful. CNNs are
already better than human radiologists finding cancer (103).

4. In general, CNNs are useful with multidimensional arrays (tensors).

CNNs can also be used to play games. AlphaGo (139) is the most famous
example. It uses a 12-layer CNN, trained with reinforcement learning, to identify
potential moves. Go is a game with a great deal of potential symmetry, and
convolutions are good identifying them. Multiple-layers identify the recursive
nature of the patterns.

6.8 Summary

CNN almost always stands for convolutional neural network, not classifying neu-
ral network. CNNs are ANNs with at least one convolutional layer. Of particular
interest is the filter, it regularizes a neural network while extracting learned fea-
tures. Filters work on grids by identifying components of interest regardless of
where they are in an input grid. They can be trained with normal backpropaga-
tion making them attractive for incorporation in ANN software libraries. When
designing and reasoning about a CNN, it important to think about the flow of data
in terms of shapes and what layers are doing with them.

6.9 Projects

The aim of these projects is provide insight and experience into how the
performance of a CNN responds to changes in its hyperparameters. The
projects are based on the Python notebook that can be found here, https://
github.com/nom-de-guerre/DDL_book/tree/main/Ch06. The notebook is called,
MNIST06.ipynb. The site includes directions for obtaining the data (MNIST).

https://github.com/nom-de-guerre/DDL_book/tree/main/Ch06
https://github.com/nom-de-guerre/DDL_book/tree/main/Ch06
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1. Plot the percentage correct of the test set as a function of the number of features
in the first layer.

2. Plot the percentage correct of the test set as a function of the width of the FFFC
initial dense layer.

3. Plot the time versus percentage correct of the test set as a function of kernel
width and number of features.
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7

Fixing the Fit

So far this book has demonstrated how to train articial neural networks (ANNs).
While theoretically the methods presented thus far should be sufficient to train
practical models, there are further points to bear in mind when designing prac-
tical software to train models. There are techniques that accelerate convergence
of training. Trained models also need to be verified to confirm that they are suit-
able. These considerations imply that there are a few more ancillary concepts that
are required to successfully implement a deep learning (DL) library. We cover the
most important points in this chapter.

7.1 Quality of the Solution

Once training has been completed, we can be confident that our ANN has learnt
the training data to the required degree. The model has converged, and the train-
ing loss has sunk below the specified tolerance. In general, however, models are
trained for applications that have to deal with data that are not in the training set.
The trained ANN must infer correctly from unseen data. The value of a DL model
is its ability to perform inference. Therefore, it is important to understand how a
trained model will generalize to unseen data. Following training, we can use the
model with the training data and that results in the training error, but that only
tells us about data that our model has already seen. We are really interested in the
model’s error with unseen data. This error is called the generalization error. Esti-
mating the generalization error is the subject of this section. To that end, we will
also introduce some important terminologies and concepts.

Finding a reliable estimation of the generalization error is challenging. A sta-
tistical argument could be made that as the training data, and the unseen data
are produced from the same underlying, but unknown, process, it follows that
the unseen data must be similarly distributed so the generalization error and the

Demystifying Deep Learning: An Introduction to the Mathematics of Neural Networks,
First Edition. Douglas J. Santry.
© 2024 The Institute of Electrical and Electronics
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training error should be the same. The argument is based on the assumption that
the training data and the unseen data are all independently and identically dis-
tributed samples, so the model should perform just as well with unseen data. This
argument is, however, naïve.

7.2 Generalization Error

Let us examine the problem of estimating the generalization error with respect to
the MSE loss function. The expectation of the generalization error can be defined
as, 𝔼[(ŷ − y)2], which is the expectation of the loss function. The components are
ŷ ≡ ANN(x), x is the observed predictor, and y is the ground truth. Of course the
ground truth will probably not be available in production1; if it was available, then
there would be no need for the model. None the less some conclusions can be
drawn from the expectation. The expression can be expanded by recalling the def-
inition of the variance of a random variable, 𝜎2 = 𝔼[z2] − 𝔼[z]2. If we rearrange
the terms, we obtain 𝔼[z2] = 𝔼[z]2 + 𝜎2. Letting zi = ŷi − yi the result is

𝔼[(ŷ − y)2] = 𝔼[ŷ − y]2 + 𝜎2. (7.1)

There are two terms on the right. The first is the square of the bias. The second
term is the variance. Let us deal with these two terms separately. But first, it is
important to realize that during training the model is the result of both the act of
training and the effect of the training set. A different training set, or indeed, just
a different seed to the random number generator, would yield a different model.
The trained model is very much a variable in this context.

7.2.1 Bias

The bias of a model is defined as bias = 𝔼[ŷ − y]. It is a measure of how wrong a
model is relative to the underlying ground truth, or the generative process. Ideally,
a model would be unbiased, that is, the bias would 0. Informally, we can interpret
it as a measure of how wrong our assumptions are about the underlying process
producing the data. The canonical example is the Bernoulli distribution,

P(X = q) = 𝜇q ⋅ (1 − 𝜇)1−q. (7.2)

It is the special case of the Binomial distribution where n = 1 and q takes on the
values of either 0 or 1. It is used for binary outcomes. Given a set of outcomes,

1 Production means that the Deep Learning model has been deployed and in real use by the
application.
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{q1, q2,… , qN}, 𝜇 can be estimated as

𝜇̂ = 1
N

N∑
qi, (7.3)

which is an unbiased estimator. The bias is𝔼[𝜇̂ − 𝜇], and we can see that as N → ∞
then 𝜇̂ → 𝜇 and the bias → 0. Thus, it is an unbiased estimator of 𝜇. The estimator
understands the underlying process generating the observable data. Of course this
is a trivial example of parametric estimation. An ANN is far more complicated and
models are more complex objects than simple parametric estimators. The bias is
rarely zero. There are a number of interpretations of model bias.

In the context of ANNs, a model with a high bias does not explain the training
set well. Recall the example of a least squares fitting of the sine curve in Section
3.4. The bias was extremely high, and intuitively it is clear why: sine is not linear,
that is, the model was “wrong.” In machine learning (ML) this phenomenon is
known as underfitting. The trained model does not explain the training data well.
The size of the training set can be increased, but the quality of the results will not
improve. Low bias is a desideratum of a ML model.

Underfitting of ANNs can occur when either the loss threshold is too high or the
loss threshold cannot be met. In the latter case, the ANN’s capacity to learn the
training set was not sufficiently high. Either there are not enough layers or there
are not enough neurons (or both). The more neurons there are the more trainable
parameters, and the learning capacity of the ANN is increased. The number of
neurons can be increased by either increasing the depth of the ANN or widening
a layer.

7.2.2 Variance

The second term of generalized error is the variance. It is a measure of how the
models produced vary with respect to sampling the underlying process. A training
set is a sample of an underlying process or phenomenon. The training set is, in
effect, a random variable. For a given statistic, e.g. arithmetic mean, it will vary
from training set to training set, but the underlying process itself has an unknown
mean. So in a very real sense the model is a function of the training set, which is in
turn a random variable. The variance is a measure of how the performance of the
model varies with respect to sampling the underlying process. Models with high
variance tend to lead to overfitting; learning the data too well to the exclusion of
generalizing. Low variance of a model is a desideratum. Overfitting is the effect
of learning the training set to the point of being unable to recognize similar, but
unseen, data. Consider the 5 examples of the hand-written digit, 3, in Figure 7.1.
If we trained an ANN to learn the right-most example perfectly, then it would fail
to recognize the remaining 4 examples. The model will have overfitted and only
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Figure 7.1 Sample of hand-written 3s from the MNIST dataset.

recognize the 3 that it learnt to the exclusion of unseen, but genuine 3s. Overfitting
can be addressed with a number of mechanisms. For example, the training set can
be improved by adding further examples of 3s. More information leads to a more
robust model. The training can also be terminated sooner so the ANN’s idea of
what exactly constitutes a “3” is broader, that is, more general. The latter is far more
difficult to get right. Ideally, the training process itself could be made more robust.

7.2.3 The Bias-Variance Trade-off

Returning to the measure of the generalization error, the expectation 𝔼[(ŷ − y)2] =
𝔼[ŷ − y]2 + 𝜎2 can be viewed as, bias2 + variance. There is a great deal of theory
surrounding bias and variance in ML (61). It has been postulated that there exists
a fundamental tension when training ANNs, and ML in general, known as the bias
variance trade-off. When training a model one has to trade-off the bias against the
variance, or vice versa. It is argued that this is a general constraint that applies to
all ML models.

Consider the Figure 7.2. For a given training set, we show the decision boundary
resulting by varying the hyper-parameter, k, for 3 k-nearest-neighbors (kNN)
models (60). For the same training set, we obtain radically different decision
boundaries. For small k, the model is extremely sensitive to the slightest change
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Figure 7.2 kNN models for a static dataset. The data are produced as pairs of normally
distributed (x, y), and the classes have different means to produce the geometrical
differentiation. From left to right k = 5, 10, and 25. Note that the decision boundary
becomes far more regular with increasing k.
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Figure 7.3 The classical bias-variance trade-off. The minimum of the error occurs as the
bias and variance intersect. Underfitting occurs to the left of the dotted line and
overfitting to the right.

in the training set, so it has high variance, but we obtain low bias. There are
fewer misclassifications of the training set, but any change in the training set will
produce a very different model. If we increase k to reduce the variance, we observe
that the bias is increasing and the number of misclassifications is also increasing;
the decision boundary is becoming straighter and less jagged. Adjusting either of
the bias or variance has an inverse effect on the other. Thus, it is suggested that
in ML, there is a fundamental tension between overfitting and underfitting, the
bias-variance trade-off (137). The relationship is demonstrated in Figure 7.3. The
diagram depicts the classic “U” shaped error curve. The best a model can do is
find the minimum of the error curve.

Recall that bias can be construed as how “wrong” a model is. Least squares is
an example of a high bias model, but it is also a low variance model. Changing a
few points in the training set is unlikely to dramatically change the resultant slope.
Generally, the more complex a model, the higher the variance and the lower the
bias. In the context of ANNs, this is viewed with respect to the number of param-
eters, the majority of which are usually weights. The more parameters in a model
the greater its capacity to learn. Overfitting is also known as overparameterization.
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7.2.4 The Bias-Variance Trade-off in Context

The relevance of the bias-variance trade-off to ANNs is currently hotly debated.
Many have observed that it does not seem to apply in practice. It is certainly diffi-
cult to demonstrate without contriving unrealistic constraints on the ANN, hence
the use of a kNN model to demonstrate the concept. An important early work that
examined the relationship in the specific context of an ANN is a paper written
by Geman et al. (46). They examined the bias-variance trade-off in the context of
ML algorithms, including clustering algorithms and ANNs. The authors success-
fully demonstrated the operation of the trade-off in all the models they examined,
except ANNs. They assumed there was a problem with the training, but claimed
the trade-off applied to ANNs as well.2 Later work has shown that bias and vari-
ance seem to have a different relationship in ANNs (28); these authors refer to the
bias variance trade-off as a dogma in connection to ANNs. Both the bias and the
variance can simultaneously go up or down. The authors further suggest an expla-
nation for the problems described in Geman suggesting that their experiments
are correct, but their conclusions mistaken. Certainly, extreme caution must be
exercised when discussing bias-variance trade-off in the context of ANNs.

More appropriate measures of ANN model performance have been proposed,
and they appear to be fruitful areas of research, for example, the theory of
“double descent” (10) and effective model complexity (EMC) (72). Whatever the
conclusions, ANNs are a field of ML, and ML is sensitive to the bias-variance
argument. The debate will doubtless continue, and every practitioner should have
a reasonable grasp of the concept. Regardless of the precise relationship between
the bias and the variance, overfitting and underfitting are phenomena that are
very real and need to be carefully monitored. To produce quality DL models
practical methods are required to evaluate generalization.

7.2.5 The Test Set

It is clear that meeting a target loss when training a model is not sufficient grounds
for accepting a model. A further means to increase confidence in the result is
indicated, ideally quantitative and empirical. In this section, we examine how to
approximate the generalization error with a test set.

Training an ANN is performed with a training set. While it may appear that
dataset and training set have been used synonymously, they have not been. The
training set comes from the dataset, but not necessarily all of it. Prior to training,
it is good practice to divide the dataset in to two disjoint sets, training and test.

2 The authors were acting in good faith and behaved correctly. The raw data was presented and
the problem discussed openly. The authors believed they had failed when they had actually
succeeded in finding something very interesting. It was very good science.
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The training set is used to fit the model. The test set is kept in reserve to be used to
validate the fitted model following training; its data are never used during training
and remain unseen by the model throughout. Assuming the dataset as a whole
truly represents the ground truth of the problem domain, then the test set can be
used to estimate how the model will really behave when deployed, that is, how it
will generalize to unseen data.

The procedure is as follows. The dataset is split between the training set and
the test set. The model is fitted to the training set. With the test set, an estimation
of the generalization error can now be computed by using the model to perform
inference on every datum in said set. As the ground truth is available for the test
set, the performance of the model can be quantified. For regressors, the MSE loss
is used as the performance metric. The quality of classifiers could also be gauged
with their loss function, but typically accuracy is used (percentage correct). The
percentage typically ranges between 100% and (100/K)%, where K is the number
of distinct classes. A test error of 100% suggests that the model is working very well
(if that was the training accuracy overfitting may have occurred). Accuracy of 1/K
indicates that the model is totally broken. Random guessing is just as accurate;
hence, the lower bound. If the test loss, or accuracy, are not tolerable, then the
model should be revisited and subsequently retrained.

The ratio of the sizes of test to training sets varies with the size of the dataset
as a whole. A training set that consists of circa 100,000 examples or more can be
split up as 90:10 training:test. But for smaller datasets, larger proportions of test
and training are required. If the training set is small, then an assumption is made
that training the model is cheap. In this case, a technique called folding is used.

The technique of folding provides for training and validating a model multi-
ple times. This is actually best practice in general, but as fitting models can be
expensive there are occasions when it is simply too expensive to train and validate
multiple times. The procedure of folding is as follows. The dataset is randomly split
in to two disjoint sets, the values of 2/3 training and 1/3 test is a good choice. The
random divisions of the data are known as folds. For classification, the proportions
of examples for each class should be the same, but this generally happens naturally
with uniform sampling. A model is trained with the training set and then its per-
formance with the test set computed. The process is repeated multiple times. The
final result is the mean and standard deviation of the accuracies of the individual
runs. Following a number of folds, confidence can be had in the hyperparameters
that produced the model, which in turn suggests that the model is good.

Finally, overfitting can be avoided with a third division of the data, a verification
set. A verification set is disjoint from the training set. During training, the model
is verified with the verification set following the execution of each epoch. When
the model achieves 100% accuracy with the verification set training is halted. This
can be expensive, but it is effective.
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7.3 Classification Performance

Understanding the performance of classifiers can be challenging. Should the test
error prove to be 100% accurate, then confidence can be had in the trained model.
When the test error is below the required threshold, then it is instructive to
examine the results in more detail. An important method is that of the confusion
matrix (113), it is a form of Pearson’s contingency table (111). An example is
presented in Figure 7.4 for the iris dataset. The iris dataset contains 150 entries
representing 3 species of iris. There are 50 examples of each of the three species
represented in the set. The k-fold test method was used on an ANN classifier with
a ratio of 1/3 for the test set and 5 folds3 (the parameter of the folding has nothing
to do with the number of classes); so there were 250 predictions made with 5
separate models. The confusion matrix can be used to interpret the results.

Given a classifier with K distinct classes, a confusion matrix is a K × K matrix
of outcomes. The columns are the ground truth, and the rows are the predictions
of the model. Given an example from a test set, the model makes a prediction.
The confusion matrix is updated by incrementing the entry at, (prediction, tar-
get). Ideally, only the diagonal on the matrix would be populated, and all other
entries would be zero. Such a result coincides with 100% accuracy. For larger or
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3 The iris dataset is very easy to learn, so training was terminated early to make the confusion
matrix “interesting.”
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complicated problems, this is unlikely. A good model will be diagonally dominant.
The confusion matrix captures a great deal of the behavior of a model.

Examination of the confusion matrix suggests that there are four possible out-
comes. They are

True Positive (TP): A TP is the correct classification. They are found on the
diagonal of the confusion matrix. For the species, virginica, the entry at (1, 1)
represents the TPs, 66.

False Positive (FP): A FP is an example that was classified as particular class
incorrectly. They are found in the row for a class, excluding the diagonal entry:
FPi =

∑K
j≠i mi,j. For virginica, FP1 = 11 + 5 = 16.

True Negative (TN): A TN is an example that is not a member of a class
that is not classified as a member of the class. It is the remainder of the matrix
that, for class k, excludes row k and column k, TNk =

∑K
i≠k

∑K
j≠k mi,j. Thus, for

versicolors, TN2 = 66 + 6 + 2 + 87 = 161.
False Negative (FN): A FN is a member of a class that was misclassified as

another, incorrect, class. For a class, k, its FNs are found in the column k, excluding
the diagonal entry, FPj =

∑K
i≠j mi,j. The FN count for virginica is FN1 = 22 + 2 =

24.
All four quantities can be computed for each of the K classes of a classifier

individually. With these definitions, further definitions can made leading to more
insight in the confusion matrix. The quantities defined above are referred to by
their acronyms.

Precision is defined as TP∕(TP + FP). It is a measure of how well a classifier dis-
criminates between a given class and the other classes. For example, medical data
is often not as uniformly distributed as the iris dataset. A classifier trained on an
experiment looking at serious disease may have far more healthy examples than
disease positive examples. A dataset arising from a medical study might contain
95 healthy individuals and only 5 with heart disease. The model could classify all
examples in the dataset as healthy yielding 95% accuracy, yet it is clear that the
model does not work; it has no value. The precision metric would be infinite for
the case of heart disease indicating that the model does not work (the denomi-
nator is 0). Accuracy does not tell the whole story. Precision punishes models for
making mistakes, not simply giving them credit when they get something right.
The highest precision a model can get is 1.0, which occurs when there are no FPs.
This can be important, classifying a sick person as healthy is potentially a serious
mistake. The opposite, while not ideal, is not as serious.

Recall is defined as TP∕(TP + FN), where TP + FN = all instances of a class in
the test dataset. It is a measure of how well the model “remembers” the class. In the
example of the broken model for heart disease, the recall is 0.0, another indicator
that the classifier does not work. The best recall possible is 1.0, which occurs when
there are no FNs.
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A further higher level measure of correctness is the F1-score of the matrix. It is a
measure of how the model is doing with respect to all of the classes. The per class
score is defined as

F1k = 2 ⋅
precisionk ⋅ recallk

precisionk + recallk
, (7.4)

where k is the class being examined. The best F1 score is 1. The precision and
recalls have a maximum of 1 so the fractional part of the expression peaks at 0.5.
The F1 is scaled by a factor of 2 to make it a normal metric. It can be interpreted
as the covariance of precision and recall.

For the virginica class we have, precision = 66/(66 + 16) = 0.805, and the recall
= 66/(66 + 24) = 0.733. This gives F1 = 0.767. Whether this value is acceptable is
based on the application. For disease detection, this is probably far too low.

The scores can be combined to sum up the performance of the model. The F
score for each class is first computed. The final step is to combine the individual
F1 scores into a single score for the entire matrix. The two most popular methods
are variants of the arithmetical mean. The simplest method is that of the arithmetic
mean of the F-scores for a confusion matrix,

Ftotal =
1
K

K∑
Fi. (7.5)

The second method is simply a weighted version. The terms are weighted by the
percentage of the test set it represents. The weighted mean is not always appro-
priate. For example, if used with the healthy-skewed medical dataset, the heart
disease class is the most important class, and we do not want it overwhelmed by
weighting the healthy people. The weightings can be synthesized to increase the
importance of the disease positive cases.

There are many different measures possible when examining a confusion
matrix. The Matthews correlation coefficient (MCC) takes better account of
the FNs in multiclass models (14). For important applications where coverage
and efficacy are really important, it can make sense to employ a framework
incorporating many aspects of classification performance. The restrictedness and
bias-dispersion are just two metrics used in a complete framework to quantify
correctness and incorrectness of models by the authors of class dispersion (37).
There are many possibilities. The correct choice depends on the requirements
of the application. Metrics are a double-edged sword. Goodhart’s law states
that any metric becomes useless as soon as it is stated. What he meant was
that people tend to lose sight of what they are trying to measure, instead they
focus on the optimizing the number. A framework of metrics can slow the
effect down.



�

� �

�

7.4 Regularization 143

7.4 Regularization

A serious problem when training models is the phenomenon of overfitting. This
is of particular concern in larger and deeper networks. One means of addressing
the problem is with regularization. Regularization is the act of calibrating models
such that overfitting is less likely. The particular technique that we describe in this
section is called neuron dropout, it is also known as dilution.

An important technique in ML is known as the ensemble method. To increase
the accuracy of a system multiple models are trained. Together, all the trained
models form a set of models, or an ensemble. When performing inference, the
entire ensemble of models is used and some means of aggregating their responses
is taken, that is, all the models cast a vote for the final result (e.g. the arithmetic
mean of their responses). While effective, this technique is impractical for the
larger neural networks where the memory, training time, and inference time may
be prohibitive. A method to realize some of the benefits of ensemble methods in a
single large neural network was developed called dropout (68; 144; 157).

When used with ANNs, the training infrastructure requires some minor mod-
ification. Up until now, the forward pass of an ANN was the same regardless of
training or inference. Dropout requires different forward passes for both cases.
The forward pass is different when training. The training infrastructure needs to
inform the ANN when training has stopped and started. The remainder of the
section describes dropout for all phases of use.

7.4.1 Forward Pass During Training

The dropout idea is both straight forward and elegant. Prior to training, every
neuron in the network is assigned a probability, pdropout, that determines its prob-
ability of being included in a given forward pass of training; typically, the dropout
probability is the same for an entire layer. The coarser granularity of specification
is easier to manage, and there is no real advantage to varying the probabilities
within a layer. Prior to performing a forward pass in a dropout layer, we determine
which neurons are present. Inclusion in the forward pass is determined by sam-
pling the uniform distribution; this is done for each neuron in the layer. Those
neurons which are determined not to be present are not included in the forward
pass. Thus, each forward pass during training is in a network that is a subset of the
original full network, and we have approximated an ensemble. There are exponen-
tially many possible subnetworks that can be embedded in the original network,
see Figure 7.5. If there are n neurons, then there are 2n possible subgraphs. Once
training has been completed, inference always includes the full network. Dropout
is performed for each element in the training set (the forward pass) during train-
ing, but only during training. Dropout is easily implemented by simply adding a
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Figure 7.5 An example of an ANN with a dropout layer. The left side shows a possible configuration with a dropout of 0.5. The right side
shows the logical ensemble resulting from training. The subnet changes for every element of the training set.
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step to normal layer computation. The modification is shown in Algorithm 7.1.
Layers compute their usual output. The list of dead neurons is computed for this
forward pass and their states are set to 0.0.

Algorithm 7.1 Dropout for a Dense Layer’s Training Forward Pass
1: procedure DROPOUTTRAININGFORWARD

2: z̄ ← 𝜎(Wx + b)
3: 𝛽 ← U(M𝓁) ⊳ vector uniformly sampled [0, 1] for each neuron.
4: 𝛽 ← 𝛽 > pdropout ⊳ vector of True/False (1/0)
5: z ← 𝛽 ⊗ z̄ ⊳ Element-wise multiplication
6: end procedure

7.4.2 Forward Pass During Normal Inference

The forward pass for normal inference needs to be modified to accommodate an
ANN trained with dropout. During training, the forward pass only used subnets of
the complete graph, the result of dropout. The forward pass during normal infer-
ence does not use dropout. Every neuron is always on. Recall the initial dot product
for a neuron’s state,

u =
M𝓁−1∑

xiwi. (7.6)

A problem arises if 𝓁 − 1 used dropout during training. u will be smaller during
training than during inference. Some percentage of the xi will be zero during train-
ing resulting in consistently smaller dot products. All of the weights deeper in the
network will be calibrated for weaker signals. Turning all the neurons on again
results in propagating stronger responses than deeper layers observed during train-
ing. Once training has terminated layers beneath a dropout layer need to adjust
how they compute their state. The expectation of a neuron’s dot product during
training is

𝔼(u) =
∑

pixiwi, (7.7)

where pi is assigned per layer, the previous layer. Then we can rewrite it as

𝔼(u) = p𝓁−1

∑
xiwi. (7.8)

Note that it is the deeper layer accounting for the shallower layer’s dropouts. This
suggests that the deeper layer’s vector of dot products can be performed as

u𝓁 = p𝓁−1W𝓁z𝓁−1, (7.9)

where we have simply scaled the usual computation with the pdropout of the shal-
lower layer. The resulting signal has been attenuated and will produce more con-
sistent behavior deeper in the ANN.
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7.4.3 Backpropagation of Error

Just as the forward passes required some modifications so does the backward pass.
The backpropagation of error only requires a minor modification. The dropout step
needs to be accounted for in the backward pass. Only those neurons that were
included in the forward pass should be included in the back propagation. The gra-
dient cannot flow along paths that are dead ends. Dropout is differentiable, and so
it can be easily incorporated in the backward pass. This is confirmed as follows:

𝜕L
𝜕zi

= 𝜕L
𝜕zi

⋅
𝜕zi

𝜕zi
= 𝜕L
𝜕zi

⋅ 𝛽i, (7.10)

where the 𝛽i was computed during the forward pass. Consequently, entries in the
vector will be only be 1 if the neuron was included in the forward pass, zero oth-
erwise. The resulting gradient is zero for dead neurons.

A potentially onerous drawback of this form of regularization is the different
methods of computing the forward pass of an ANN when training and performing
inference. As described thus far, a training step involved the normal forward pass
of an ANN followed by a backward pass. The forward pass is the same whether
training or performing inference. Dropout requires a mechanism, sometimes
called “freezing,” where the model is informed that training has terminated and
the inference version of forward computation is required. This requires more
infrastructure in a software implementation.

On a practical note, many implementations use “inverted dropout.” During
training, the responses are scaled so that learning is not affected by dropout. Then
normal inference can be used. This still requires a different code-path for the
forward pass during training, but the inference forward pass remains unchanged.
Inverted dropout isolates the changes to the layer that is using dropout. The
deeper layer does not need to know anything about its immediate predecessor,
and that is very desirable. The updated algorithm is specified in Algorithm 7.2.

Algorithm 7.2 Inverted Dropout for a Dense Layer’s Training Forward Pass
1: procedure DROPOUTTRAININGFORWARD

2: z̄ ← 𝜎(Wx + b)
3: 𝛽 ← U(M𝓁) ⊳ vector uniformly sampled [0, 1] for each neuron.
4: 𝛽 ← 𝛽 > pdropout ⊳ vector of True/False (1/0)
5: z ← 1

pdropout
⋅ 𝛽 ⊗ z̄ ⊳ Element-wise multiplication

6: end procedure

Despite the potential difficulties, the essence of the method is relatively simple
so dropout is a popular means of regularizing models. There are two ways to imple-
ment the technique efficiently. One way is to retrofit it to existing implementations
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x ≡ input

zl-1 = σ(Wx + b)

zl-1 = σ(Wzl + b)

zl = β ⊗ zl-1

l

Dropout
layer

l + 1l – 1

1 1 1

Figure 7.6 The architecture of a dropout implementation. The dropout logic is
interposed in an isolated layer. The layer deals with the implementation while keeping
the other implementations ignorant of what is happening.

of layers, which has been described. The most popular way, however, is to intro-
duce a specialized dropout layer. The dropout layer is placed immediately deeper
to the target dense layer. A specialized layer has two advantages. The particulars
of dropout are encapsulated entirely and isolated in one place. An encapsulated
layer makes code reuse easy. The dropout layer does not have to be retrofitted to
every type of layer in the library; all existing layers in the library get dropout for
free. An example architecture is shown in Figure 7.6. A dedicated dropout layer
can be placed as the deeper neighbor in a model beside any type of layer that needs
to be regularized. The latter does not even know, effectively creating the illusion
that the shallower layer is a dropout layer. Dropout layers form an important tool
for regularizing DL models. They are, however, used sparingly, for example, as the
final layer in a deep ANN prior to softmax. It is rare to see a dropout layer following
every dense layer in a model.

Figure 7.5 gives an example of training with dropout. A specialized dropout
layer performs the regularization. During training, the dropout layer decides
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which neurons will participate, they are light, and which ones to drop, the dark
neurons. This happens for every example in the training set. The connections
between the regularized layer and the dropout layer are 1:1, not dense. The
two dense layers are oblivious to the regularization. The dropout layer accepts
the output of the shallower layer and zeros out the entries for the excluded
neurons. The new result vector is then passed on as usual, all:all. The dropout
layer has no effect on back-propagation phase of the training step. The gradient
is received by the dropout layer, and the entries for the precluded neurons
are zeroed. The dropout layer then passes the gradient back to the shallower
layer.

Regularization is important for training DL models. The learning capacity of
an ANN is proportional to the number of neurons. Selecting the right number is
difficult. Underfitting is relatively easy to detect, but overfitting it more difficult.
Adding neurons to fit the model is common response, and dropout layers help keep
the potential overfitting at bay. A software implementation should be verified with
the technique of differencing equations presented in Section 3.7

7.5 Advanced Normalization

In Section 3.1, it was argued that preprocessing data by normalizing was critical for
successful training. Normalizing the training set produces desirable numerical and
statistical effects for the input layer. Hidden layers also have the same problems.
While preprocessing ameliorates potential numerical problems for the input layer,
the hidden layers do not necessarily benefit.

Consider the input layer. It accepts the normalized training data and then pro-
duces its response. The signals produced by the input layer will probably be dis-
tributed very differently from the normalized training data that produced them.
In general, the input for a layer is distributed very differently from its output.
This is especially true at the start of training when the weights are random. All
the arguments for normalizing training data apply to hidden layers as well. More-
over, following weight updates at the end of each training epoch the distributions
change. Indeed, the weight updates are based on the 𝜕L

𝜕w
s, which approximates the

instantaneous rate of change for the loss function at the precise point, Loss(w),
where Loss is the global objective function and w is the vector of every weight
in the ANN. Changing one entry in w changes L, which in turns changes all the
𝜕L
𝜕w

s. Changing all of them simultaneously has an even stronger effect. This effect
retards the training and in consequence the hidden layers are chasing a “moving”
target as each epoch changes what they observe. The effect is demonstrated in
Figure 7.8. The difference between epochs is clearly visible.
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Interlayer normalization attempts to address the problem by introducing
normalization between the layers in the ANN. There is, however, a significant
challenge. In contrast to the static training set, where the normalization parame-
ters of mean and standard deviation need only be computed once, layer outputs
change with every training epoch. Following the weight updates, the distribu-
tions of signals emitted by the layers are inflected. This implies that a per-layer
normalization scheme needs to update itself following every training epoch. The
following presents two approaches in order of both chronological conception and
feasibility.

7.5.1 Batch Normalization

Batch normalization is a technique developed to address the problem of shifting
layer response distributions. The insight behind the idea is that normalization can
take place inside the ANN, not just prior to the input layer with the pre-processing
of the training set (75; 133). Batch normalization is effected by interposing a layer
that implements the normalization of the signals between the layers.

The object of interposing a normalization layer is the same as preprocessing
the training set. There are, however, more difficulties. Unlike preprocessing of the
training set, which only needs to be done once, the batch normalization has to be
done following every training epoch. This is because each training epoch produces
different weights and consequently a different distribution of signals. An impor-
tant restriction is that whatever transformation is interposed, the transformation
must be differentiable to fit in to a back-propagation scheme.

All of the excellent arguments for encapsulating dropout in a self-contained
layer hold for batch normalization as well, so we will assume that it is the imple-
mentation. A batch normalization layer, 𝓁, normalizes the signal from 𝓁 − 1. The
neurons between the two are connected 1:1. The batch normalization layer has the
same number of neurons, and they are directly connected, M𝓁−1 = M𝓁 . The out-
put of the normalization layer is fully connected to the deeper layer, 𝓁 + 1. The
arrangement is depicted in Figure 7.7.

Batch normalization does the same job as preprocessing the training data, but
in a layer. The batch normalization layer will need statistics for centering and
Z-scoring, so it needs the mean and the standard deviation of 𝓁 − 1’s signals for
the epoch. The mean is computed per neuron over the all the data in the training
epoch:

∀neuroni ∈ 𝓁, 𝜇i =
1
N

N∑
j

zi,j, (7.11)
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{μ1, σ1, γ1, β1}

{μ2, σ2, γ2, β2}

Normalization
layer

1

Figure 7.7 An ANN with a batch normalization layer. The 1:1 links correspond to the per
neuron normalization statistics.

and the standard deviation is

𝜎i =

√√√√ 1
N

N∑
j
(zi,j − 𝜇i)2. (7.12)

This is done on a per neuron basis, that is, we have M𝓁−1 neurons so there are M𝓁−1
pairs of {𝜇i, 𝜎i} in layer 𝓁. Assuming N elements from the training set are in the
training epoch, then we need to buffer them to compute the statistics required to
perform the normalization. With the statistics calculated layer 𝓁 − 1’s, signals are
normalized with:

ẑ𝓁−1 =
z𝓁−1 − 𝜇

𝜎
. (7.13)

While the normalized data will be better behaved, there is a danger that normaliza-
tion may limit what the 𝓁 − 1 layer can represent. To ensure that 𝓁 − 1’s ability to
learn is not infringed upon there is one final step. The batch normalization layer’s
final output, z𝓁 , is computed with two learnable parameters as

z𝓁 = 𝛾 ⋅ ẑ𝓁−1 + 𝛽. (7.14)
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Figure 7.8 The unnormalized means ribboned with the standard deviation for 5 epochs
of training LeNet-5 at layer C5. The epochs are clearly delineated. The weight updates in
the deeper layer will have to adapt to a distribution of signals that it has never seen
before every epoch.

Both gamma and beta are trainable parameters learnt during fitting of the model.
If need be, training can force the parameters to undo the normalization by learning
𝛾 = 𝜎 and 𝛽 = 𝜇.

Batch normalization requires all N outputs from its immediately shallower layer
before it can compute the statistics. It follows that 𝓁 must buffer 𝓁 − 1’s signals. If
𝓁 − 1 has M𝓁−1 neurons, and the training epoch is processing N samples from the
training set, then a buffer of size of M𝓁−1 ⋅ N will be required. This leads to a new
algorithm for processing a training epoch.
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Algorithm 7.3 Training Forward Pass for Batch Normalization
1: procedure BATCHNORMALIZATIONFORWARDPASS

2: Z ← Training Set
3: for 𝓁 ∈ ℒ do
4: if 𝓁.isBN then
5: Z = 𝓁.BatchNormalize(buffer)
6: Z𝓁 ← Z ⊳ The intermediate results are required for BPG
7: continue ⊳ Move to next layer
8: end if
9: for z𝓁−1 ∈ Z do ⊳ batch moves through the ANN en masse

10: Z.append = 𝓁.compute(z𝓁−1)
11: end for
12: Z𝓁 ← Z ⊳ The intermediate results are required for BPG
13: end for
14: end procedure

Algorithm 7.3 is structured very differently than the earlier training epoch
described in Algorithm 3.1. Note the inversion of the loops. The batch normal-
ization version does not iterate over the training set, but rather, the layers of the
ANN, as the entire batch must progress through the ANN as a whole. The earlier
version of a training epoch used to iterate over the training set. A forward pass
was immediately followed by a backward pass, ping pong style, and there were N
executions of each pass. The batch normalization version only has one forward
pass; the training set moves through the ANN together. While it is not necessarily
slower, it is roughly doing the same amount of work, merely in a different order,
it does consume more memory. The individual Z𝓁s must be retained as they
are required to compute the 𝜕L

𝜕z
s during the backward pass (they are used to

propagate the gradient between layers). The requirement is far more onerous
when processing an entire training batch at once. Back propagation must also
proceed in a batch-oriented fashion; the backward pass cannot proceed until the
forward pass has completed. Back propagation through a batch normalization
layer must also proceed as a batch. This follows from differentiating a path
through the normalization.

Backpropagation must go through the normalization layer so its derivatives are
required. Batch normalization is differentiable, but messy. The derivatives are sep-
arated into two sets, or phases. They need to be evaluated in the order presented
as there are dependencies. Notice the derivatives of the variance and the mean
involve sums over the entire batch. The first set of derivatives is required to prop-
agate the gradient through the layer. The computation of the gradient needs the
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following derivatives (reproduced from the paper):

𝜕L
𝜕ẑ𝓁−1

= 𝜕L
𝜕z𝓁

⋅ 𝛾, (7.15)

𝜕L
𝜕𝜎2 =

N∑
i

𝜕L
𝜕ẑ𝓁−1

⋅ (z𝓁−1 − 𝜇) ⋅
−1
2
(𝜎2 + 𝜖)

−3
2 , (7.16)

and,

𝜕L
𝜕𝜇

=

( N∑
i

𝜕L
𝜕ẑ𝓁−1

⋅
−1√
𝜎2 + 𝜖

)
+ 𝜕L
𝜕𝜎2 ⋅

−2
N

⋅
N∑
i
(z𝓁−1 − 𝜇). (7.17)

Finally, with the above values computed, the expression below is the gradient that
is propagated to the shallower layer:

𝜕L
𝜕z𝓁−1

= 𝜕L
𝜕ẑ𝓁−1

⋅
1√
𝜎2 + 𝜖

+ 𝜕L
𝜕𝜎2 ⋅

2(z𝓁−1 − 𝜇)
N

+ 𝜕L
𝜕𝜇

⋅
1
N
. (7.18)

With the latter derivative, the gradient can be pushed to the shallower layer.
Observe that only layer outputs need to be retained as claimed. The intermediate
ẑ𝓁−1 values do not appear, just their derivatives, which can be easily computed.

The second set of derivatives is required to update the learnt parameters, 𝛾 and 𝛽.
They too are sums over the entire batch.

𝜕L
𝜕𝛾

=
N∑ 𝜕L
𝜕z𝓁

⋅ ẑ𝓁−1, (7.19)

and

𝜕L
𝜕𝛽

=
N∑ 𝜕L
𝜕z𝓁

. (7.20)

Bear in mind that these expressions are per neuron in the normalization layer.
There will be M𝓁−1 of them, as dictated by the preceding shallower layer.

When training is terminated, the model is ready to be used for inference, and
the layer will have learnt the M𝓁−1 pairs of 𝛾 and 𝛽, but there is still a require-
ment for the {𝜇i, 𝜎i}. During inference, there are tuples of {𝜇i, 𝜎i, 𝛾i, 𝛽i} required.
The easiest solution is to retain the {𝜇i, 𝜎i} computed during the last training
epoch.

While promising experimentally, batch normalization is not widely imple-
mented. The problems far out-weighed the advantages. The memory requirements
can be prohibitive. Using SGD does address the memory requirements to some
extent. The method also introduces a great deal of potential numerical instability,
the above derivatives represent many opportunities for overflow, underflow and
NaN. The algorithm is also difficult to retrofit into existing training libraries
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as it required a new data flow during training. Batch normalization did, how-
ever, inspire a more practical form of interlayer normalization that forms the
subject of the Section 7.5.2.

7.5.2 Layer Normalization

While batch layer normalization has been shown to be efficacious, its drawbacks
are clear. It consumes a great deal more memory than a general training epoch and
in addition requires a different flow of the data during training. The latter can lead
to what is in essence a complete reimplementation of the supporting software. In
an attempt to realize the advantages of batch layer normalization while addressing
its drawbacks layer normalization was developed (7; 166).

The central challenge when developing interlayer ANN normalization is
computing the required statistics. The key innovation of layer normalization was
discarding the separation between neurons in the normalization layer. Prepro-
cessing the data for the input layer per feature makes sense; there are genuine
intrafeature relationships that are important and need to be preserved. Once the
input layer has computed its scaler products, however, the “features” have been
melded together; treating the resulting features separately, it was posited, may
not be important.

The insight led to the following, instead of normalizing per neuron across a
training batch, layer normalization normalizes the response vector instead. This
results in normalizing per training example. Normalization takes place across the
vector by computing the mean and standard deviation element-wise of a single
vector. This approach leaves the data flow in a training epoch unchanged. Layer
normalization can be encapsulated entirely in an interposed layer so nothing out-
side the layer is aware that it is taking place. When a response, z𝓁−1, arrives, its
mean and standard deviation are computed immediately. No buffering is required,
and the normalized response can be passed on straight away. With batch normal-
ization, where the vector, z𝓁−1 ∈ ℝM𝓁−1 , has M𝓁−1 neurons, an epoch produced
M𝓁−1 pairs of statistics, and only once per training epoch with the buffered vectors.
Layer normalization produces N pairs of statistics, one for each training example
in the forward pass, and they are discarded as soon as they have been used. There
is no buffering required. The mean is computed with,

𝜇 = 1
M𝓁−1

M𝓁−1∑
i

z𝓁−1[i], (7.21)

and the standard deviation is

𝜎 =

√√√√ 1
M𝓁−1

M𝓁−1∑
i
(z𝓁−1[i] − 𝜇)2. (7.22)
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The derivatives for layer normalization are the same, except the sums are across
the vector instead of the batch. They are reproduced below to account for the
different summations.

𝜕L
𝜕ẑ𝓁−1

= 𝜕L
𝜕z𝓁

⋅ 𝛾 (7.23)

𝜕L
𝜕𝜎2 =

M𝓁−1∑
i

𝜕L
𝜕ẑ𝓁−1

⋅ (z𝓁−1 − 𝜇) ⋅
−1
2
(𝜎2 + 𝜖)

−3
2 , (7.24)

and,

𝜕L
𝜕𝜇

=

(M𝓁−1∑
i

𝜕L
𝜕ẑ𝓁−1

⋅
−1√
𝜎2 + 𝜖

)
+ 𝜕L
𝜕𝜎2 ⋅

−2
M𝓁−1

⋅
M𝓁−1∑

i
(z𝓁−1 − 𝜇). (7.25)

The above computed the gradient is propagated with,

𝜕L
𝜕z𝓁−1

= 𝜕L
𝜕ẑ𝓁−1

⋅
1√
𝜎2 + 𝜖

+ 𝜕L
𝜕𝜎2 ⋅

2(z𝓁−1 − 𝜇)
M𝓁−1

+ 𝜕L
𝜕𝜇

⋅
1

M𝓁−1
. (7.26)

And for the trainable parameters:

𝜕L
𝜕𝛾

=
M𝓁−1∑ 𝜕L

𝜕z𝓁
⋅ ẑ𝓁−1. (7.27)

𝜕L
𝜕𝛽

=
M𝓁−1∑ 𝜕L

𝜕z𝓁
. (7.28)

Training is performed with the standard SGD training algorithm. A layer normal-
ization layer is interposed between dense layers where required and is completely
encapsulated. This is a very attractive feature. Software infrastructure does not
need to change to accommodate it, and memory demands are not increased either.
The numerical stability of the derivatives is also far better than full batch normal-
ization. Sums over a vector are better behaved than over an entire training set.

To demonstrate the advantages and the dynamics of layer normalization, a com-
parison between with and without layer normalization for an ANN classifier for
the iris dataset is presented. The graph in Figure 7.9 shows the distribution of the
means for a layer over two attempts to train a model. The model was initialized
with the same weights for both runs. The differences between the distributions are
striking. Layer normalization has a tighter distribution. The deeper layer will have
an easier time of converging as a result. Without normalization, the distribution
drifts creating difficulties its deeper neighbor.

When implementing algorithms such as layer normalization, it is a very good
idea to verify the resulting code with the technique of differencing equations intro-
duced in Section 3.7. If the derivatives are not implemented correctly, they will
have pernicious effect on convergence; this can be hard to detect without direct
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Figure 7.9 The distribution of means by type. The layer normalization densities are far
more predictable over time, hence the deeper layer can learn faster. The weight updates
do not confuse it.

confirmation of correctness. The differencing technique will quickly identify the
underlying problem.

7.6 Summary

Evaluating the quality of a trained model is challenging. The applications for mod-
els require them to perform inference on unseen data, and unseen data is unknown
data. The performance of a model with unseen data is the generalization error.
There is a great deal of theory in ML to analyze generalization error for ML, but the
jury is out on its relevance to ANNs. Nonetheless, overfitting and underfitting are
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genuine phenomena. Regularization techniques are used to address overfitting,
and neuron dropout is one of the most important techniques to address it. Normal-
ization accelerates convergence by making interlayer signals more predictable.

7.7 Projects

The projects below rely on notebooks that can be found here, https://github.com/
nom-de-guerre/DDL_book/tree/main/Chap07.

1. The Python notebook iris07.ipynb contains an implementation of an iris clas-
sifier. Plot a graph of the classifier’s bias versus variance by experimenting with
different topologies.

2. The Python notebook MNIST07.ipynb contains an implementation of an
MNIST classifier. Measure the accuracy difference between the dropout
version and the control version of the model.

3. Implement a confusion matrix with the MNIST classifier in the previous
project.

https://github.com/nom-de-guerre/DDL_book/tree/main/Chap07
https://github.com/nom-de-guerre/DDL_book/tree/main/Chap07
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8

Design Principles for a Deep Learning Training Library

This chapter describes how to design and implement a software library for
building deep learning (DL) models. Models are built with software libraries. This
is the software that applications use to define, assemble, and train models. The
design principles are all demonstrated in a software library called the Realtime
Artificial Neural Tool (RANT). RANT is an artifact developed for use with
DL experimentation and embedded applications. The source code is available
online.1 The library is written in C/C++ for efficiency, but it does include Python
bindings. Some might question why Python was not used. The answer is that most
implementations of DL training routines are written in a lower level language.
For example, libraries such as TensorFlow are implemented in C/C++ and
exposed in Python. Python is implemented in C. To understand how to implement
a DL library, we need to work in a low-level language. Demonstrating how to
use a DL training library would be appropriate in Python; again, even Python
implementations generally call down into C/C++ code to the workhorse routines.

Many indulge in dogma when prescribing computer languages, but it is
important to bear in mind that computer languages are like any other tool, saws,
hammers, and kitchen blenders. It is important to use the right tool for the job.
All computer languages have strengths and weaknesses. Selecting the appropriate
language for a task is an exercise in objectively examining the trade-offs that are
appropriate for the task at hand. Many students do not understand statements
such as, “Python is slower, but more productive.” Such a claim is laden with
information for a computer scientist, and we examine it here, in the course of
which the use of C/C++ for low-level routines will be motivated.

1 https://github.com/nom-de-guerre/RANT.

Demystifying Deep Learning: An Introduction to the Mathematics of Neural Networks,
First Edition. Douglas J. Santry.
© 2024 The Institute of Electrical and Electronics

https://github.com/nom-de-guerre/RANT
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8.1 Computer Languages

Computer languages are as old as computers themselves. Every generation of
computers tends to be accompanied with a new generation of languages. As
computers grow more powerful, the number of abstractions and services offered
by computer languages grows. The realized increase in hardware compute power
over earlier generations increases the “budget” for using computers to ensure
their own self-correctness with more abstract computer languages.

The earliest form of programming digital computers involved writing the
machine code, the actual numbers that a computer understands as commands,
in raw form. The first machines built with vacuum tubes simply did not have the
capacity to be programmed any other way. In the earliest instance, this involved
sitting at a console, individually setting the bits of a machine word with toggle
switches, and then sending the word to a memory location one at a time; this had to
be done for every word in the program! This was a time consuming process. Once
the memory had been set up the program could run. Debugging was a nightmare.

Writing central processing unit (CPU) operation codes and operands in numeric
form is difficult and prone to mistakes. The introduction of assembly language was
an enormous improvement. Computer commands (machine instructions) were
assigned human readable mnemonics and translated into machine understand-
able numbers with software, the assembler. We may view it as extraordinarily
primitive today, but it was a big step forward. Assembly code was still prone to
bugs, time consuming, and not portable. Programs had to be rewritten every
time a new computer was purchased. Assembly language was, however, far more
productive. Programmers could write and debug code faster.

Consider the following example for the IBM 701.2 To add the contents of mem-
ory location 6 to the accumulator register the assembler code is, -ADD 6. The
binary representation had to be coded by hand prior to the advent of assemblers,
101001:0000000000110. The assembler turned the mnemonic into the machine
code reducing errors and increasing the speed of software development.

In 1954, IBM introduced FORTRAN, a high-level language for scientific comput-
ing. FORTRAN faced a great deal of resistance initially as it was considered far too
inefficient compared to assembler code; computers were so slow that squeezing
every last operation out of them was paramount. The resistance was short lived.
The exorbitant cost of rewriting programs for every new computer architecture
quickly led to FORTRAN’s adoption. The portability of the code between archi-
tectures, faster development time, and fewer bugs more than made up for any
speed degradation. Soon important routines were written once and packaged up as

2 The IBM 701 Mainframe was a landmark machine whose introduction led to IBM’s
dominance in the following decades.
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libraries. The code had been debugged to the point of total reliability and sharing
it further increased productivity. Libraries of important scientific and engineering
routines made writing new applications easier. Every new missile guidance system
no longer began with rewriting the basic matrix and linear algebra routines that
were required. The FORTRAN language took off and is still widely used today.3

FORTRAN is terse and was designed for scientists and engineers. It was
designed for high-performance scientific computing. The business community
had different requirements and users. Business problems are more concerned
with data flow (processing customer records and bills, etc.), code readability,
and documentation to support maintenance and extensions. FORTRAN was
not suitable so a new language, COBOL, was introduced in 1959. COBOL was
more data record oriented, and more like English (to the point where the earliest
specification was so ambiguous that COBOL code was not portable, it depended
on compiler behavior. As portability was a primary goal this was a gross error).
These early languages did not stray far from the machine architecture they were
originally designed to run on. The computers they were designed for could barely
add and subtract, there was no compute head room for abstraction (multiplication
was usually a software routine, not a machine instruction). The choice between
COBOL and FORTRAN was a trade-off, usually dictated by the application. The
number of languages available quickly proliferated in the 1960s as computers
became more powerful, cheaper, and more widely available.

Of note, before we fast forward to today is the C language. It was introduced
in 1972 with version 2 of the UNIX operating system. UNIX was designed on a
new class of computer, the mini-computer,4 and was developed on a DEC PDP-7.
It was fast, simple, and made pointers a first class language element. It is still
an important language today for systems programming because it is low level. To
understand the utility of C, we need to examine how it works. It will explain why
some basic machine learning routines are still written in C++ today, even if they
are exposed for use in higher level languages such as Python.

An application is a program of instructions for a CPU to execute; the term of art,
program, has precisely the same meaning in lay English. Computer instructions
are numbers specifying primitive operations such as add the contents of memory
location x to the contents of memory location y and store the result in z. Some
CPU architectures can do that with one instruction. Others might require 4
instructions, load [x] into the CPU, load [y] into the CPU, add the values, and
store in [z]. High-level languages abstract these primitives and leave the details to

3 FORTRAN programs are still used to benchmark and rank the world’s fastest supercomputers.
4 Mini-computers were scaled down mainframes and made possible by the recent invention of
integrated circuits. The Intel 8088 would be introduced 7 years later in 1979 setting off the PC
revolution.
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main ()

C ×86 M1 (ARM)

pushq
movq
xorl
movl
movl
movl
addl
movl
popq
retq

sub
mov
str
mov
str
ldr
ldr
add
str
mov
add
ret

sp, sp, #16
w8, #5
w8, [sp, #12]
w8, #7
w8, [sp, #8]
w8, [sp, #12]
w9, [sp, #8]
w8, w8, w9
w8, [sp, #4]
w0, #0
sp, sp, #16

%rbp
%rsp, %rbp
%eax, %eax
$5, -4(%rbp)
$7, -8(%rbp)
-4(%rbp), %ecx
-8(%rbp), %ecx
%ecx, -12(%rbp)
%rbp

{

}

int x = 5;
int y = 7;
int z = x + y;

Figure 8.1 A C program and the resultant assembly code following compilation to two
popular architectures. Both architectures make direct use of the stack to store the
automatic variables. A C programmer would expect the stack to be utilized in that way,
have complete access to the addresses of the identifiers, and understand the results are
only valid in that stack frame. Note that just because the ARM version is longer does not
mean that it is slower, the individual machine instructions can be faster.

the compiler. A C compiler will accept a statement such as z = x + y and turn it
into the correct program of machine instructions (the machine code). Moreover,
C statements will often roughly correspond to machine instructions, and that is
the fastest a program can run. A good C compiler’s optimizer will produce code
that does not even touch memory unnecessarily vastly speeding up execution.
An example is given for a snippet of C code and the resultant assembler code in
the table depicted in Figure 8.1. C makes direct use of a CPU’s hardware stack
(most modern CPUs directly support a hardware stack). Observe how different
the output is between CPU architectures. Writing per platform code with an
assembler was both time consuming, riddled with bugs and had to be done every
time a new computer was purchased. The idea of compiling high-level languages
was an enormous step forward.

A C/C++ programmer needs to understand5 memory usage very well and
manages it directly and completely. It is precisely this control, coupled with inex-
perience or lack of knowledge, that routinely leads to bugs with C/C++ programs.
The heap can be confused with the stack, double free, writing over freed memory,
the list is endless, but the list of C/C++memory bugs is a foreign language to many
modern programmers trained on languages such as Python. The power of C/C++
is useful for systems programming, such as writing an operating system kernel or a
graphics processing unit (GPU) device driver for machine learning. It is also useful,
even necessary, for libraries that are called frequently and need to be performant.

5 Sadly, programmers often do not posses the necessary understanding, hence dangerous bugs
and security flaws in low-level code written in C.
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As computers grew more powerful, the computer itself could be used to increase
correctness. Computers now have sufficient power to run programs and provide
many run-time ancillary services. Languages such as Java and Python offer little
or no correspondence between the machine and the language. Java is compiled
to an intermediate assembly language for a Java virtual machine (JVM). Python
is interpreted. Both languages offer memory management. Allocating and free-
ing memory are not concerns for a Python programmer. There is, however, a cost.
When Python evaluates z = x + y, it does not correspond to a series of machine
instruction but rather a sequence of high-level language operations that in turn
execute many machine instructions. This is not necessarily a bad thing. Speed of
implementation (productivity) and eliminating an entire class of memory bugs are
well worth the price on modern CPU architectures, but too often students are not
aware of the trade-off much less the cost.

C/C++ are low-level languages giving them direct access to hardware primitives
and hardware. This includes control over the IEEE 754 rounding method. There
are four modes, and they are exposed in C/C++ via FLT_EVAL_METHOD (float.h).
There are also many platforms where performance is still paramount. Mobile
phones and embedded devices are very sensitive to memory usage and CPU
consumption. Apple uses Swift and Android uses Java (and Kotlin).

Table 8.1 gives an indication of the differing performance. The Python pro-
gram creating a classifier with the Iris dataset is using Keras and Tensorflow.
Consequently, it is eventually calling down into C/C++ code. The comparison
between loops was done with for, which is sympathetic to Python as the differ-
ence between while loops is known to be wider. A Python programming rule of
thumb is to use for instead of while where possible because it is faster.

An examination of the relative energy requirements of computer languages con-
cluded that C is the most energy efficient language, and Python was ranked at #73
(112). The authors also demonstrate that Python consumes a great deal more mem-
ory. This can be an important consideration for embedded applications and mobile
devices.

Table 8.1 Comparison of Performance Between C++ and Python.

Language Count to 1,000,000 (For Loop) 100 Epochs Learning Iris

C++ 3 ns 0.05 s
Python 1628.4 ns 26.09 s

a) Comparison of values computed with backpropagation of error and differencing. The ratio
suggests good agreement between both methods suggesting correctness of the BPROP
implementation.
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The energy footprint, and the related metric of carbon footprint, has for the most
part been ignored in the machine learning community. Research tends to focus on
increases of accuracy and capability. This is not necessarily a bad thing, but some
attention will probably fall on the cost of training as models grow increasingly
hungry for energy. Efforts such as DAWNBench (23) are a step in the right direc-
tion. The benchmark includes metrics such as time to accuracy, which implicitly
admits of an energy efficiency interpretation. It is not much of a leap to refine the
metric to explicitly measure performance in terms of Joules. Competitions such
as JouleSort (125) make a more explicit connection to energy efficiency. Sorting
algorithms are evaluated with respect to speed and energy usage. The DL commu-
nity can learn from such efforts. Spiking neural networks are an attempt to build
models with lower energy requirements (69), but they do not perform well (47).

A powerful compromise to gain the productivity of Python and the power of
C/C++ is the Python package, ctypes. Routines and libraries are written in C/C++
and then exposed higher up in Python. Numpy and Tensorflow are two examples
of this approach. Applications can then be written in Python that call the perfor-
mant code, or access devices such as a GPU, by calling the Python bindings.

It must be made very clear, and this section was not an anti-Python polemic.
Python is a very productive language. Implementing a computer language
requires selecting a point in the design space dictated by what the language is
trying to achieve. The trade-offs adopted by the language constitute the niche that
the language occupies. The list of modern computer languages is endless. C/C++
and Python are different languages trying to achieve different things. Python
dominates its niche because it is a great language. Python’s eco-system of libraries,
support and documentation are unparalleled for machine learning and ANNs.
The abstractions it offers also yield tremendous productivity. It can, however, be
useful to understand what is happening under the hood of the implementation of a
language. This is not just abstract, and it can lead to writing better Python code too.

8.2 The Matrix: Crux of a Library Implementation

Having motivated the adoption of C/C++ as an appropriate implementation
language, the next step is to propose sound design principles for implementing
ANN libraries. The first step is to select the basic abstractions that form a sound
basis upon which to build an overall architecture. Artificial neural networks are
assemblies of synthetic neurons (perceptrons). When implementing an ANN
library, it is natural to consider selecting the neuron as the unit of abstraction.
Defining a neuron class would encapsulate its weights and connections, and it
makes sense. While esthetically pleasing it would perform very badly. It makes
more sense to designate the layer as the unit of abstraction. A layer’s connections



�

� �

�

8.2 The Matrix: Crux of a Library Implementation 165

are easily managed with a single matrix of weights (a row per neuron, a column
per incoming connection). The algorithms presented thus far have all been
matrix-centric, and this is one of the reasons.

Training Neural Networks involve two phases: a forward pass and a backward
pass. Both operations are performed, depending on the nature of the problem, hun-
dreds or even tens of thousands of times; it is all that training an ANN does. We
have seen in previous chapters how both phases are represented with 3 matrix
operations, a matrix vector product in the forward phase, or inference, and a trans-
pose matrix vector product followed by a vector outer product in the backward
pass. The performance of an implementation will depend very much on how well
these basic operations are implemented. Before one can understand how to best
implement these operations, a brief review of computer architecture is required.

A note on the scale of the DL models is in order here. Models vary in size and
scale. The algorithms presented so far are correct, but writing down an algorithm
is very different from realizing the implementation of one in a computer. The
trade-offs and design for an implementation that can handle models with billions
of learnable parameters and smaller million parameter models are different. The
most challenging problems today require multiple GPUs to train in a practica-
ble time frame (29). Training language models can take days. The techniques
developed and presented below are for CPU-based implementations.

8.2.1 Memory Access and Modern CPU Architectures

Two important pieces of a modern computer are the CPU and memory (DRAM).
Computer programs, and their data, are stored in DRAM. Before a CPU can
operate on the contents of memory, data, a datum must be loaded into the CPU
and stored in a CPU’s register. The CPU loads data from DRAM over a memory
bus. Reading and writing memory is one of the slowest operations that modern
CPU’s perform. It is important to understand how it works. Memory is divided up
into bytes and can be thought of as an enormous array (we elide the interposition
of virtual memory as it is not required here). The basic architecture is presented in
Figure 8.2. The CPU loads a variable by requesting data from the DRAM array with
the variable’s memory address.6 This is what the two examples of assembly code
spend most of their time doing, accessing memory (the stack) in Table 8.1. There
are two salient architectural points to note when reasoning about memory. Both
are invisible to the programmer, even at the assembly code level. Nevertheless,
these architectural features are extremely important to the performance of
programs.

6 In C/C++ a memory address is called a pointer. Java and Python do not grant direct access to
memory. They offer the safer “reference” abstraction.
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CPU

CPU registers

CPU cache 32k

Memory management unit (MMU)

×86: eax, ebx, rbp, rsp, ...

Figure 8.2 Detail of the memory hierarchy.
The DRAM DIMM at the bottom is where the
data lives. To operate on data, the CPU must
load it into a CPU register (Intel ×86
architecture depicted). The memory
management unit (MMU) loads data from
DRAM into the CPU cache, and from the CPU
cache, it can be loaded into a CPU register.
Source: Kjerish/Wikimedia Commons/CC BY-SA
4.0.

The first point is the existence of a quantum unit of access to memory by the
CPU. It is called the CPU cache line. Even if memory is addressable at the granu-
larity of the byte the CPU must access memory, that is, read and write, in units of
the cache line size (e.g. 64 bytes on Intel CPUs and 128 bytes for M1 SoCs). A cache
line is fetched from DRAM and stored in the CPU cache. The CPU accesses are also
aligned on cache line size. For example, if a program reads byte 438, an M1 will
load 128 bytes from offset 384 and store it in the CPU cache; the desired byte is the
54th byte in the cache line. Once the cache line is loaded, the actual byte that has
been requested will be fetched into the core’s register. In the course of loading, the
cache line it will evict a cache line that is already in the CPU’s cache. This hap-
pens invisibly and is managed entirely by the CPU. Note that in this example the
program only needs 0.78% of the data that was loaded from memory into the CPU
cache.

The number of CPU cycles required to access DRAM is circa 100 clock ticks. The
number of cycles required to perform an operation, such as addition, is circa 10
clock ticks. The ratio of time to fetch a datum versus the operation is enormous.
Programmers and compilers do not need to be aware of the details of memory
access, but it is important to understand it when writing high-performance code.
The speed mismatch is observable and easily measurable. When a CPU has to wait
for a memory fetch, it is stalled and does no work.7 A CPU clocked at 3.2 GHz could
conceivably execute operations on data at that rate, but rarely gets close owing to
memory fetches.

7 Stalling is such a serious problem that the SPECTRE family of security bugs, etc. was
inevitable.
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A =

1 2 3

4 5 6

7 8 9

1 2 3 4 5 6 7 8 9

1 4 7 2 5 8 3 6 9

205 206 207 208 209 210 211 212 213 ...

Row order A

Column order A

...

Figure 8.3 Two options for the physical memory layout of a matrix, A. The base address
of the matrix is 205 in DRAM. Row order provides for the rows to be laid out contiguously
in memory. Column order is the opposite. CPUs access memory in units of cache lines so
the choice is important.

The second important point relating to physical memory is memory layout.
Physical computer memory, DRAM, is just a linear array. To support higher
dimensional objects, such as a two dimensional matrix, we have to superimpose
some abstractions on the linear memory. While we may access the object with a
(row, column) pair in a high-level language, the two coordinates must be mapped
to a linear address at the machine code level. The matrix, no matter how it is
represented higher up, will be laid out linearly in memory. There are two feasible
configurations for scientific computing,8 see Figure 8.3 for an example. They are
called row order and column order.

Row order is the arrangement of each row laid out contiguously in memory, one
row after another. To access element (i, j) it must be converted to a linear address
as address = base + i × ncolumns + j (e.g. the address of A(1, 2) = 205 + 1 × 3 +
2 = 210, so the content of A(1, 2) is 6). The data can be laid out in column order
as well, which is just the opposite of row order. The choice is not arbitrary and
very important. Row ordered is favored for matrix vector products, and column
order is favored for transpose products and vector decompositions (as a column
is contiguous a single pointer encapsulates the vector). With this knowledge, an
informed decision can be taken respecting how to lay out the weight matrices.

The most frequent operation over a model’s life time is inference. Inference
is a recurrence equation encapsulated with matrix–vector multiplications.
Matrix–vector products favor row-order layouts. The W𝓁+1z𝓁 product benefits
from the row-order layout as it is repeatedly multiplying the rows in W with an
ante-layer vector output. Vectors are always contiguous as they are effectively
1-dimensional. When the CPU loads a row from DRAM, it is fetching entire cache
lines of data and using 100% of the data that was loaded. Some CPUs can detect
the serial access of memory and prefetch cache lines (rows). In this instance, the
memory subsystem is streaming data from memory to the CPU cache as fast as

8 When the performance of iterating over the entire matrix is not critical, then a matrix can be
synthesized by abstracting it. One method is to build a binary tree or hash table of rows or
columns. The interposition of abstract data structures over linear arrays is not considered here
as the matrix products would be infeasibly slow.
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possible. An additional advantage is the data is only loaded once. For W ∈ ℝn,m,
the number of memory fetches is n ⋅ m÷ cache line length. If the matrix was
laid out in column order, then the number of memory fetches would be n ⋅ m.
In both cases, there are n ⋅ m multiplications and n ⋅ (m − 1) additions, but the
expensive operation is the memory access, and memory access will dominate. The
effect is pernicious and easily measured. This is one of the reasons why Python’s
Numpy library is written in C. Fine-grained control of the memory is crucial
for performance. A further advantage to streaming the data is the opportunity
for compilers to detect the contiguous memory multiplications. Many CPUs can
multiply 4–8 products in parallel. Compiler optimizers that detect contiguous
operations can use native CPU vector instructions.

8.2.2 Designing Matrix Computations

Careful design of matrix operations is important. They are at the heart of an imple-
mentation. Informed by how data moves between a CPU and memory, the design
of the matrix operations can now be elucidated.

The algorithms have been implemented and are available as part of the RANT
Deep Learning library. The interested reader will find the matrix code encapsu-
lated in the type, NeuralM_t. The class is implemented in NNm/NeuralM.h. The
class implements all of the operations required to implement an ANN. It is not a
general implementation of a matrix. Most matrix operations are missing; they are
not required.

The design is optimized for usage on a CPU. The matrices are stored in row order.
The three operations that an ANN implementation requires are

1. u𝓁 = W𝓁z𝓁−1 + b𝓁 : ante-activation neuron state, it is a GAXPY (general Ax
plus y)

2. 𝜕L
𝜕z𝓁

= W T
𝓁+1𝛿𝓁+1: interlayer gradient transmission, a transpose matrix–vector

multiplication
3. ΔW𝓁 = ΔW𝓁 + 𝛿𝓁 ⋅ zT

𝓁−1: per weight error, a vector outer product to update the
net 𝜕L

𝜕wi
s.

The row-order layout renders the implementation of GAXPY straight forward.
For W ∈ ℝn,m, we can iterate over the n rows to compute the n dot products in
the output vector. As the rows and the vector, z, are contiguous in memory perfor-
mance will be good:⎛⎜⎜⎜⎝

b1 w1,1 w1,2 w1,3

b2 w2,1 w2,2 w2,3

b3 w3,1 w3,2 w3,3

⎞⎟⎟⎟⎠
⎛⎜⎜⎝
z1
z2
z3

⎞⎟⎟⎠ =
⎛⎜⎜⎜⎝

b1 +
∑

izi ⋅ w1,i

b2 +
∑

izi ⋅ w2,i

b3 +
∑

izi ⋅ w3,i

⎞⎟⎟⎟⎠ . (8.1)
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The NeuralM_t class includes an extra column for the bias. The GAXPY for u𝓁 =
W𝓁z𝓁−1 + b𝓁 is implemented in Algorithm 8.1.

Algorithm 8.1 GAXPY for a Neural Matrix
1: procedure GAXPY(W , x,u)
2: index ← 0
3: for i in rows do
4: u[i] ← W[index] ⊳ the bias
5: index ← index + 1
6: for j in columns do ⊳ The dot product
7: u[i] ← u[i] + x[j] ⋅ W[index]
8: index ← index + 1 ⊳ sequentially stream W
9: end for

10: end for
11: end procedure

The second operation, the transpose multiplication, presents more of a chal-
lenge. It can be implemented by physically transposing the matrix, which is a copy,
and then using the normal GAXPY routine, but this is both slow and consumes
memory. It can be efficiently implemented by logically transposing the weight
matrix with a specialized multiplication routine. Moreover, to maintain cache line
efficiency the transpose product works on the original matrix, W𝓁 , and loads the
data in row order, but instead of computing a complete dot product per iteration
(the ith row producing the ith entry in the product vector) we compute one term
for each of the n dot products simultaneously:

⎛⎜⎜⎝
w1,1 w1,2 w1,3
w2,1 w2,2 w2,3
w3,1 w3,2 w3,3

⎞⎟⎟⎠
T ⎛⎜⎜⎝
𝛿1
𝛿2
𝛿3

⎞⎟⎟⎠ =
⎛⎜⎜⎝
𝛿1 ⋅ w1,1 + 𝛿2 ⋅ w2,1 + 𝛿3 ⋅ w3,1
𝛿1 ⋅ w1,2 + 𝛿2 ⋅ w2,2 + 𝛿3 ⋅ w3,2
𝛿1 ⋅ w1,3 + 𝛿2 ⋅ w2,3 + 𝛿3 ⋅ w3,3

⎞⎟⎟⎠ . (8.2)

The NeuralM_t class includes an extra column for the bias. The gradient propaga-
tion, defined as 𝜕L

𝜕z𝓁
= W T

𝓁+1𝛿𝓁+1, is computed in routine 8.2.
The final operation, the outer product, consists of ΔW𝓁 = ΔW𝓁 + 𝛿𝓁 ⋅ zT

𝓁−1,
where we are updating a dense matrix. The previous operations are products of a
matrix and a vector producing a vector. The outer product is different. The matrix
being updated is accumulating the net gradient on a per weight basis. The factors
in the product, two vectors, are not the determiners in this operation. The product
is a dense matrix and determines the efficient way to proceed. Proceeding
along the rows in the product the updated matrix is streamed into, and out of,
the CPU. The priniciples described are demonstrated in Algorithm 8.2.
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Algorithm 8.2 Gradient Transmission for a Neural Matrix
1: procedure BPROP(W𝓁 , g𝓁−1, 𝛿𝓁)
2: g𝓁−1 = 0 ⊳ assign the null vector
3: index ← 0
4: for i in rows do
5: index ← index + 1 ⊳ skip over the bias
6: for j in columns do
7: g𝓁−1[j] ← g𝓁−1[j] + W𝓁[index] ⋅𝛿𝓁[i]
8: index ← index + 1 ⊳ sequentially stream W
9: end for

10: end for
11: end procedure

ΔW𝓁 = ΔW𝓁 + 𝛿 ⋅ zT
𝓁−1

= ΔW𝓁 +
⎛⎜⎜⎝
𝛿1
𝛿2
𝛿3

⎞⎟⎟⎠ ⋅
(

z1 z2 z3
)T

=
⎛⎜⎜⎜⎝
Δw1,1+ = 𝛿1z1 Δw1,2+ = 𝛿1z2 Δw1,3+ = 𝛿1z3

Δw2,1+ = 𝛿2z1 Δw2,2+ = 𝛿2z2 Δw2,3+ = 𝛿2z3

Δw3,1+ = 𝛿3z1 Δw3,2+ = 𝛿3z2 Δw3,3+ = 𝛿3z3

⎞⎟⎟⎟⎠ . (8.3)

With efficient implementations of these matrix operations, a sound basis for the
implementation of a training library is created. A great deal of work has been done
to make matrix operations efficient for CPUs. One approach is to extract all of the
performance possible by writing assembly routines optimized for a particular CPU
(52). Matrix operations are highly parallelizable, which lends them to concurrent
computation. A library can be written to compute the individual dot products in
parallel resulting in vast increases in speed (142).

8.2.2.1 Convolutions as Matrices
An important activity of CNN filters is computing the kernels (Section 6.3). The
kernels can be construed as matrix multiplications. Efficiently computing the ker-
nels is effected by transforming the input image to a matrix of kernels. The new
matrix is amenable to high-performance matrix multiplication. High-performance
matrix libraries that implement general matrix multiplication (GEMM) (9), or a
tuned implementation such as those described in Section 8.2.2, can then be used.
The process is depicted in Figure 8.4.

Producing the intermediate matrix can be expensive. While building the inter-
mediate matrix, the kernels are available, why postpone the kernel computation?



�

� �

�

8.3 The Framework 171

Input image 6 × 6

Matrix of kernels 9 × 4

Filter 4 × 1

Feature map 9 × 1,
row-order 3 × 3
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Figure 8.4 The physical layout of the input matrix is on the left. The matrix of kernels
is to the right. The feature map is computed with a matrix multiplication. The kernel is
2 × 2, and the stride is 2.

The answer is the CPU’s floating point implementation. On some CPUs, it may not
make sense, but for many, the scaler multiplication instruction is expensive. Apple
M1s and Intel x86 have limited, but useful, vector instruction. They can compute
4–8 multiplications in parallel, so it is worth the memory copying. On a GPU, the
win is far greater.

The matrix of kernels is also useful for backpropagation. Reconstructing the
matrix of 𝛿s as a vector then a weight’s derivative is the dot product of a column
in the kernel matrix and the 𝛿 vector. A similar technique can also be used for
transmission of the gradient through the feature layer.

One means of producing a matrix of kernels is with Im2Col (17). Im2Col will
generate a matrix of kernels, one kernel per row. The scheme can also be directly
implemented. The RANT library includes a simple example.

8.3 The Framework

Efficient matrix operations form the kernel of a performant DL library. Matrices
alone are not, however, sufficient for a Deep Learning framework. There are some
critical missing pieces. From the matrices flow, the higher level abstractions that
produce the necessary components. Matrices are used by layers, and layers are
synthesized to produce models. It is the latter two pieces that form the study of
this section.

The object of a DL software library is to support applications that need to
train models and perform inference. The models examined thus far have been
feed-forward and fully-connected ANNs. They were described, and specified, in
terms of layers. The specification has been in terms of types of layers and their
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widths. It is the layer that encapsulates the weight matrices. A DL model is
comprised of multiple layers, by definition, and so a means of encapsulating
layers is also required. In turn, the layers must be aggregated. Collecting the
layers falls to the model. It assembles the individual layers and presents them as
a whole.

A model can be implemented as a list of layers. The list is responsible for keep-
ing the layers in the correct order and in an iterable format. The model accepts the
input, pushes the data through the graph, and retrieves the output. The interven-
ing steps between the input and output are calls to the forward pass of the layers.
A list is well suited to such a sequential flow of operations. We have seen that there
are many types of possible layers. Dense, convolutional and dropout just to name a
few. To make the work of the model tractable, every layer must implement certain
functions. The required functions are

1. Initialize: Set up initial state, including learnable parameters.
2. Forward Pass: Accept z𝓁−1 and return z𝓁 .
3. Gradient Transmission: Accept g𝓁+1 and return g𝓁 . Performs BPG on all

learnable parameters.
4. Update Weights: Informs the layer that an epoch is over. Update learnable

parameters and reset.

To enforce the implementation of the required functionality, layers must inherit
from a base class. The base class defines the correct functions. Implementations
of a layer overrides the default behavior with the functionality that defines it. The
Forward Pass routine will be very different in a dense layer and a dropout layer.
In C++, this can be done with an abstract class. An abstract class consists of virtual
functions equal to zero. The layers inherit from the abstract class and implement
the interface, that is, fill in the function definitions. As all layers have the same
interface, it is trivial to connect them up as a model. The ANN does not know any-
thing about the layers that are being invoked so any type of layer can be seamlessly
included.

A model consists of a list of the abstract class type. The forward pass is imple-
mented by iterating from the start of the list and propagating the results of the
Forward Pass method. The abstract class ensures a clean and consistent inter-
face. The loop simply iterates over the layers regardless of the composition the
model.

Layers and models have been implemented in the RANT library to demonstrate
these principles. The abstract class that RANT layers inherit is called stratum_t.
RANT models are encapsulated in the NNet_t class. The architecture is demon-
strated in Figure 8.5 for the RANT library. The interested reader is encouraged to
peruse the source code.
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Figure 8.5 The representation of an
ANN graph. Layers are implemented by
inheriting from the stratum_t type. The
model is an array of pointers of type
stratum_t. Forward and backward
passes are trivially implemented as
loops over the list invoking the relevant
method for the direction of travel.

Dense_t

Stratum_t NNet_t::n_strata

Dense_t

Stratum_t

Dropout_t

Stratum_t

Softmax_t

Stratum_t

Stitching layers together is potentially fraught with peril. The model enforces
sanity by verifying and enforcing correct shape transitions through the model.
Two dense layers can neighbor each other with no trouble. But a CNN filter with
n features needs to have a deeper neighbor of the same shape, or a flatten layer.
The shape checks are performed at model creation time as the layers are added.
The model can reject an improper layer addition and return an error.

8.4 Summary

Computers languages are designed with different objectives. Designing a com-
puter language involves selecting a design point in a large design space. The niche
the language is addressing dictates the trade-offs. Machine learning libraries
are often implemented in C/C++ because it produces high-performance code.
The libraries are exposed in higher level languages, such as Python, that offer
safety and high-level language abstractions. The RANT library can be exposed to
Python or R, but is also well suited to real time and embedded applications with
demanding requirements and a dearth of resources.

8.5 Projects

The projects below use the Python notebook MNIST08.ipynb that can be found
here, https://github.com/nom-de-guerre/DDLbook/tree/main/Chap08. Use the
notebook to verify your work is both correct and performant.

https://github.com/nom-de-guerre/DDLbook/tree/main/Chap08
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1. Matrix multiplication is trivially parallelizable. Extend RANT’s NeuralM_t class
to perform multiplication in parallel. Two widely available options for imple-
menting concurrency are POSIX pthreads and libdispatch. Choose one and
alter the method NeuralM_t::MatrixVectorMult to perform all the row and vector
dot products in parallel.

2. Measure the performance of your parallel implementation of NeuralM_t by ver-
ifying that it scales linearly with the number of threads. Time the performance
of the changes with MNIST08.

3. Implement matrix vector multiplication with column order layout. This can be
done by simply changing the loops in NeuralM_t::MatrixVectorMult. The results
will not be correct and training will not converge, but it will demonstrate per-
formance issues. Graph row order and column order times as a function of the
size of the first dense layer in MNIST08.
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9

Vistas

The subject of this book is the introduction to the canonical concepts underpin-
ning deep learning ANNs. The central ideas have been presented, but only the
surface has been scratched in the field of deep learning. The discipline of deep
learning is a very rich and fertile area of research and commercial application.
There are many directions for research and areas of specialization. Armed with
a sound grounding in backpropagation, advanced topics come into view. This
chapter presents some of the more interesting directions in which deep learning
is currently moving. As the sections below will show, the roles of ANNs have far
more potential than as regressors and classifiers.

9.1 The Limits of ANN Learning Capacity

The ANNs presented so far in this book comprise examples of regression and clas-
sification. The latter must learn decision boundaries to correctly classify input.
It was argued that the boundary could be extremely nonlinear and an ANN will
still learn it. It is intuitive that the more layers and neurons comprising an ANN,
the greater the capacity of an ANN to learn. But are there any limits to what an
ANN can learn? Are there any fundamental constraints? This section examines
the question and points the interested reader to some formal results.

The question of constraints on the ability of ANNs to represent functions has
been of interest from their inception. Moreover, an attempt to answer the question
formally in 1969 by Minksy and Papert (131) set a pall over ANN research for a
long period. They concluded that there were indeed very restrictive constraints
on what ANNs could learn. Their conclusion was based on the assumption that
ANNs could only learn simple linear decision boundaries. Image recognition
and natural language processing, the grand challenges at the time, were deemed

Demystifying Deep Learning: An Introduction to the Mathematics of Neural Networks,
First Edition. Douglas J. Santry.
© 2024 The Institute of Electrical and Electronics
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beyond the scope of what ANNs could master. Their most famous argument
showed that a perceptron could not learn XOR. The conclusions that followed
were controversial and seemed to contradict Rosenblatt’s earlier formal results.
Rosenblatt had already examined the question of convolutions of linear decision
boundaries and concluded the opposite in his famous Existence Theorem (129).
The debate has moved on since then. Non-linear algorithms and the exponential
growth in the power of computers have resulted in new assumptions. ANNs have
broken free of their linear shackles. Nonlinear learning has led to enormous
renewed interest in ANNs, yielding the current state of the art.

Modern work has been done on the question based on new assumptions leading
to many promising results. In the theory of ANNs there are many results providing
for the capabilities of what ANNs can represent (“learn”). Such results are known
as universal approximation theorems. They are concerned with the following, con-
sider some function, f , unknown and perhaps (usually) unknowable, can it be
approximated, ANN ≡ f̂ ≈ f ? The answer is, with some weak assumptions, yes, in
many cases.

As has been shown, for the ANNs presented in this book, ANN topology has two
hyperparameters, and they are depth and width. This is a two-dimensional hyper-
parameter space. Universal approximation theorems can usually be classified as
either an arbitrary depth argument or an arbitrary width argument. A seminal
paper written by George Cybenko in 1989 showed that an ANN of arbitrary width
and using the sigmoid activation function can approximate many functions (27).
This was an exciting result as the ANN community was emerging from the linearly
constrained stupor of 2 decades. Since then, there have been many further results.
Hornik showed in 1991 that the choice of activation function is not important so
much as the depth of the network (70): a deep learning theorem. Thus theory exists
supporting expanding an ANN in any hyperparameter dimension and expressing
general functions.

Examination of the problem continues today, and recently, Kidger and Lyons
showed in 2020 that for modern network topologies (i.e. deep learning), bounded
width and arbitrary depth also yield a universal approximator (82). While all of
the results are theoretical and do not necessarily lead to implementation insights,
they do provide a sound theoretical basis for ANNs and their training.

Universal approximation theorems also motivate the construction that was
placed on ANNs in Section 1.3. They create the connection between the analogy
of the raw clay of an untrained model alluded to earlier and the final molding of
the clay into any desired shape, that is, a trained model. Clay can be molded to
any shape desired, and universal approximation theorems suggest that ANNs can
be too. ANNs were originally motivated biologically, but we see now that their
use can be motivated more generally: to paraphrase a celebrated mountaineer,
“because they work.” ANNs can be viewed as programmable functions, and we
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can program them to represent almost anything. It is this power that has led to
so many more applications for deep learning, and we briefly survey a few in the
following sections.

9.2 Generative Adversarial Networks

The general form of the ANN regressor and classifier has been framed in Chapter 2,
and indeed, they are very important applications of ANNs. Both forms of ANNs
share a property: inference is performed by accepting a valid input and producing
a verifiable result. They are subject to ground truth. Generative ANNs are com-
pletely different models. They produce material that is not necessarily “wrong”
or “right”; they have no ground truth per se. Evaluating their results can be more
subjective.

Generative models produce output that resembles examples from their training
domain. The domain is specified with a dataset. A generative ANN produces novel
material, and it does not classify an input. A trained generative ANN should pro-
duce output that is indistinguishable from an example in its training set. The roles
of model and human are reversed in the sense that it is the human that classifies
the model’s output (is it good enough), as opposed to a model classifying a datum
for a human. Consider the problem of learning how to draw a hand-written 2 in the
style of the MNIST dataset. Figure 9.1 shows the intermediate stages of a genera-
tive ANN trying to learn how to draw a 2. Learning to produce an image that looks
like a hand-written 2 is different from training a model to recognize one. But the
concepts are related. Both models must have some idea of how to represent two.

Of particular interest of late is the generative adversarial network (GAN). GANs
were described in 2014 by Goodfellow et al. (50). They were later combined
with CNNs to produce the deep convolutional GAN (DCGAN) (119). This
innovation proved fruitful, and soon GANs were producing photorealistic images
(94). StyleGAN (80) soon followed producing images of human faces that were
indistinguishable from real faces. The realistic images led to the coining of the

Figure 9.1 An example of generating twos. During training, 4 sample twos were
generated every 25 epochs of training. The progression starts from the left and goes to
the right.
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phrase, “deepfake.” GANs can now generate realistic images for anything that
has a dataset to represent it such as impressionist paintings, aardvarks, or Rolling
Stones albums (81). There are examples of entire videos being produced from a
single photograph of a real person. The GAN is a fascinating innovation in that it
can produce output that has never been seen before.

Figure 9.1 shows a trivial example of teaching a GAN to learn twos from the
MNIST dataset. Over time the twos become more distinct. They were generated
with code that is available on the book website (see Section 9.7). An Apple M1’s
GPU took 5.6 seconds per epoch, and over 200 epochs consumed 18 minutes.
To limit the computational resources required to train the GAN the model was
kept simple. The training set consists of selecting a single digit from MNIST. The
example on the website is simpler; MNIST 2s have been downsampled to 14 × 14
to make it more accessible to notebook computers.

9.2.1 GAN Architecture

The crux of the GAN idea is to train two models simultaneously, but adversarially;
the two independent models compete with each other. Their names are the gen-
erator and discriminator. The generator and discriminator can be thought of as
the forger and the verifier, respectively. The discriminator is trained with a dataset
from the target domain. For example, if images of dogs are desired then the train-
ing set will consist of photographs of dogs. They do not need to be labeled. The
discriminator is trained to recognize images of dogs. The generator produces fake
images of dogs. During training, the generator tries to fool the discriminator with
its faux images. Their respective loss functions force both models to improve. The
generator and the discriminator are perpetually in a race to get ahead of each other.
This construct is a classic example of a zero-sum game.

Following the conclusion of training, the two models are divorced and only the
forger is retained. The product of training is a model, the generator (forger), that
produces output that is indistinguishable from the training set.

A rough sketch of the GAN training algorithm is as follows. The generator fab-
ricates an example that it hopes will fool the discriminator. The discriminator
accepts the fake from the generator and an example from the training set. The
dataset can be considered the ground truth, and the generator a forgery, but once
the generator is producing quality output, that line is blurred. The discriminator
learns to distinguish between the real examples and the fakes from the generator.
The generator improves as it learns from the discriminator detecting its forgeries.
Thus both models improve in tandem competing with one another. Once training
is completed, the discriminator can be discarded. The generator is the product of
training. The architecture of the GAN is presented in Figure 9.3. The dataset in
Figure 9.2 was used. The GAN is learning to draw a 2.
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Figure 9.2 A selection of hand-written 2’s from the MNIST dataset.

Training set

G(z)

D(w)

Figure 9.3 The GAN game. The generator, G, produces fakes and attempts to fool the
descriminator, D. D is learning how to recognize the real article from the training set. G
learns from D.

Two models are required. CNNs can be used for both models (making it a
DCGAN). Let the discriminator be D, then its job is to act as a gatekeeper and
only pass exemplars from the domain training set. The exclusivity is maintained
by rejecting the fakes proposed by its opponent, the generator. The function D’s
range is then 𝕂 = {Real, Fake}. It is the discriminator’s task to learn the hidden
structure of the exemplar dataset. Let x ∈ 𝕋 ⊂ 𝕌 where 𝕋 is the training set.
Then x is an example from the training set. For D(x) ∶ 𝕌 → 𝕂 the answer should
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only be Real if x really is from the training set. A perfect D would perform as
follows:

D(w) =

{
Real ≡ 1 w ∈ 𝕋
Fake ≡ 0 w ∉ 𝕋 .

(9.1)

Of course, D will only approximate Eq. (9.1) or the generator would not be very
useful, it merely represents the ideal. The discriminator is clearly a binary classifier
(see Section 4.3.1). Any ANN that can learn the domain training set can be used
as a discriminator. For example, the discriminator used to create the examples in
Figure 9.1 was a CNN designed to learn how to recognize MNIST 2s.

Generators present more of a challenge. The immediate complication lies in the
fact that ANNs require input. Generators are no different, and a means of gener-
ating input is required in addition to producing output. Let the generator be G. G
must produce its own input and learn to produce sensible output. The first problem
is solved easily; the arguments to a generator are sampled from a random distribu-
tion. The two most popular distributions are the normal and uniform distributions,
the former usually being used.

A vector of samples is obtained, z ∈ ℝd, by sampling one of the distributions.
The connection between ℝd and 𝕌 is not dictated by the range. G must learn the
distribution of 𝕋 in 𝕌. It is the task of G to map the sampled vector to something
sensible in its range, G(z) ∶ ℝd → 𝕌. Not even the shape is important, but a vector
is convenient. It is the learnable parameters in G where the sport lies; they do the
work. Using transposed convolutions and dense layers, the sample vector is shaped
to the desired output dimensions while simultaneously mapping it to the required
output distribution. In contrast to the classifying CNN, a DCGAN, is learning
features to produce them, not detect them. Like all training problems, fitting the
parameters is challenge. Provided that G’s CNN has the capacity to learn the dis-
tribution of 𝕋 the transformation can be learned. During training the parameters
in the convolutions (projecting filters) and dense layers learn how to turn random
noise into desirable output. Returning to Figure 9.1, it shows the evolution of a
generator learning to map ℝ100 → ℝ28×28 such that it produces what looks like
hand-written twos. It is the learning capacity of G that does the work, not the input.

9.2.2 The GAN Loss Function

GANs can be trained just like any neural network, with backpropagation of error,
but there are two models. The models are in competition. The first piece that is
required for a training regime is the definition of a differentiable loss function. The
generator is trying to fool the discriminator. The discriminator needs to protect
itself from the deceit of the generator. This is a zero-sum game; knowing the
outcome for one of the parties completely determines the outcome of the other.
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The loss should capture the adversarial relationship between the models. Once
the loss functions are available, both models can be trained with SGD and
backpropagation of error.

The discriminator can be construed as a binary classifier; see Section 4.3.1.
Framing the discriminator problem solely as a classifier does not quite capture the
winner take all nature of the exercise. The loss function needs to quantify the cost
of losing. Unlike a normal classifier, which can just be “wrong,” the discriminator
has not simply misclassified an input, and it has lost a game; there is a real cost
attached to a mistake. We begin with the definition of a binary classifier:

lossbinary = −[p ⋅ log(p̂) + (1 − p) ⋅ log(1 − p̂)]. (9.2)

The discriminator has two inputs which lead to,

lossD =
x∪G(z)∑

w
lossbinary(w) = lossbinary(x) + lossbinary(G(z)). (9.3)

The two cases can be treated separately and then recombined later. For the case of
x ∈ 𝕋 then D(x) is,

lossx = −[1 ⋅ log(D(x)) + (1 − 1) ⋅ log(1 − D(x))] = log(D(x)). (9.4)

and for the fake attempt,

lossG(z) = −[0 ⋅ log(D(G(z))) + (1 − 0) ⋅ log(1 − D(G(z)))] = log(1 − D(G(z))).
(9.5)

Combining the two yields Goodfellow et al.’s famous loss function for a GAN. It
was framed as a zero-sum game:

min
G

max
D

[log(D(x)) + log(1 − D(G(z)))]. (9.6)

The first term reflects the fact that examples from the training set should produce
1, and the second term reflects the desire to return 0 for the fakes. The subtraction
of 1 turns the minimum problem into a maximum problem, so the entire expres-
sion needs to be maximized with respect to the discriminator. The generator wants
to minimize the expression as its interests are in direct conflict to those of the dis-
criminator. In practical implementations, the minimization and the maximization
are broken out, and the generator uses the loss function,

min
G

− log(1 − D(G(z)). (9.7)

By making Eq. (9.6) negative, the usual gradient descent can be used; it is the stan-
dard loss minimization problem. When used with SGD the losses are summed and
scaled by the mini-batch size.

Algorithm 9.1 demonstrates the basic steps when training a GAN. The train-
ing routine loops for the specified number of steps. For clarity of exposition the
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Algorithm 9.1 Generative Adversarial Network Training
1: procedure TRAININGLOOP(N steps)
2: for i ∈ 1 ∶ N steps do
3: fake ← 𝖦𝖾𝗇𝖾𝗋𝖺𝗍𝗈𝗋()
4: genuine ← 𝗋𝖺𝗇𝖽𝗈𝗆 from Training Set
5: Dfake ← D( fake)
6: Dgenuine ← D(genuine)
7: ⊳ The first argument to binary cross entropy is the ground truth
8: lossD ← 𝗑𝖤𝗇𝗍𝗋𝗈𝗉𝗒(1,Dgenuine) + 𝗑𝖤𝗇𝗍𝗋𝗈𝗉𝗒(0,Dfake)
9: lossG ← 𝗑𝖤𝗇𝗍𝗋𝗈𝗉𝗒(1,Dfake)

10: ⊳ With the losses computed back-propagation of error is initiated.
11: BackPropagation (D, lossD)
12: BackPropagation (G, lossG)
13: UpdateWeights (D)
14: UpdateWeights (G)
15: end for
16: end procedure

1: procedure GENERATOR

2: z ← 𝗋𝖺𝗇𝖽𝗈𝗆 from ℝd

3: fake ← 𝖦(z)
4: return fake
5: end procedure

mini-batch size is set to 1. Larger mini-batches would be used in a real implemen-
tation. An inner loop that excludes the weight updates would achieve this.

The game is designed to be adversarial, but it appears that the models really
cooperate. The generator needs to learn the distribution of the domain dataset,
and the information that it needs is obtained from the discriminator. It is the dis-
criminator that propagates the information that informs the generator where it
went wrong. By evaluating the generator’s output and sharing the loss the gener-
ator learns to counterfeit the exemplar dataset’s distribution. More details can be
found in Goodfellow’s tutorial (51).

Finally, it is not clear how to specify a condition for termination. The loss func-
tions are not good guides. As the generator and discriminator compete the losses
bounce around without really representing the quality of the generator. For out-
put intended to be consumed by people then, human inspection can be used to
gauge the number of required steps to produce a satisfactory generator. Training
is often calibrated by a human observing the number of steps required to produce
acceptable results.

GANs were not the first models to generate content, nor do they constitute the
sole means of doing so. Other approaches are possible. Models trained to make
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predictions or learn features can be used to go in reverse. If a model has learnt
the features of its training set, then there is potential to leverage that knowledge
to generate data. Many models that are sequential and predictive can be reversed
to produce output instead of consuming it. A technique proposed for nonlinear
dimensional reduction, auto-encoders (87), can be used for generative purposes
(85). Employing CNNs in combination with recurrent-neural networks (RNN)
(20) can also be used for generative purposes. An early example of drawing
MNISTesque digits with an RNN can be found here (56). CNNs have also been
used, not just the DCGAN (95). The larger DCGANs can suffer from the vanishing
gradient problem. An attempt to address the problem with a stronger loss function
in the form of least squares was described in (100).

9.3 Reinforcement Learning

A powerful branch of machine learning that is rapidly growing in importance
is reinforcement learning (RL). RL is a form of unsupervised machine learning.
While strictly speaking, RL constitutes a rich field of study in its own right, ANNs
and RL have been combined with such success of late that the study of RL is
to be commended to all practitioners. A compelling example of ANN and RL
complementary success is that of ChatGPT, best documented in the description
of InstructGPT (108). RL techniques can be used on their own to solve problems,
or they can be used to train neural networks. RL models can also be used in
conjunction with ANNs as a component of a larger model. RL has roots in control
theory, game theory, and Markov processes. All of these topics are fundamental
in engineering, economics, and operations research, to name a few, so RL has
wide application. In this section, a cursory outline of RL is presented, including
a trivial but fully worked example available on the book’s website (see (9.7)). For
a full introduction to RL, the reader is directed to the excellent and approachable
book (115).

The insight behind RL lies in the intuition of how biological animals behave.
Animals, including humans, dislike pain, and hunger. What animals do enjoy are
pleasure and the satisfaction of satiation. These feelings are strongly aligned with
natural selection. When the behaviors attendant to pleasure and pain are aligned
with the selective forces in an environment, animals do well. Animals tend to
behave such that they seek pleasure and they avoid pain. An animal with a genetic
mutation that leads to it enjoying the feeling of hunger will probably not repro-
duce, and the genetic mutation will die with the individual. Animals that dislike
being hungry and eat to ward it off are more likely to reproduce. This is known
as positive reinforcement. Humans can train, or domesticate, some animals by
using positive reinforcement. Rewarding the desired behavior of an animal with
food will reinforce the desired behavior in the animal. The insight that led to the
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use of positive reinforcement in machine learning is that these phenomena can be
modeled mathematically.

RL is fundamentally different from the ANN methods that have been presented
thus far. The model that results from training an ANN with a training set can be
interpreted geometrically. ANNs are trained with supervised learning techniques;
the datasets include the ground truth – the labels. The dataset with the ground
truth defines a high-dimensional space. The object of training is to find a suitable
approximation of the decision boundaries in this high-dimensional space. In the
literature, this is also known as searching for structure. The means of training is
the repeated presentation of points in the high-dimensional space. The object is
to perform inference with the trained model, that is, given a point that is not in
the training set, the ANN is expected to place the new tuple inside the correct
decision boundary. This system works very well for classification. The experience
that results in learning, in this case, is the repeated exposure to correct examples
used to compute loss functions.

For the problem of training a model to learn a behavior, consider a robot learn-
ing to pick up a book, different techniques are required. This particular problem is
known as dextreous manipulation. The problem of teaching a model how to pick
up a bottle, or walk, is intractable when attempted with supervised learning tech-
niques. Consider the size of the training set, or even how to generate it. This prob-
lem is clearly very different: the object is to teach a behavior, not discover structure.

For a more concrete example, consider the game of chess depicted in Figure 9.4.
It is black’s move, and an experienced human player would immediately recognize
that is an opportunity to employ the Sicilian Defence. Consider training a model
to play the game. Supervised learning techniques would be extremely awkward
when applied to this scenario. The number of possible states for chess is very large
(the number of valid board configurations). An effective training set, labeled, is not
a tenable solution. RL is well suited to addressing exactly this kind of problem. RL
models are, however, trained differently. ANNs require a labeled training set and
a differentiable loss function. RL models do not learn by example, but rather, by
interaction with an environment, in this example, by playing chess. The problem
is to teach an agent how to behave, and this is done with positive reinforcement
and negative reinforcement. In the chess example the environment is the state of
the board and the desired behavior is to select a winning move.

A final note on employing supervised learning in this context. If a training set
for learning chess was generated, then the trained model would probably not
play better than the process that generated the training set (probably a human).
A desideratum may well be to produce something that is superior to human
capabilities. The human-curated training set connotes no scope for improvement –
it is a theoretical bound on achievement. RL offers the opportunity to create
something that is better at a task than the model’s creator.
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Figure 9.4 A chess game following the opening moves of both players. Blue went first,
it is thus the black player’s turn to move.

9.3.1 The Elements of Reinforcement Learning

RL is an unsupervised machine learning technique. All of the training methods
that have been presented thus far had the twin components of labeled data and a
loss function. Training consisted of verifying the output of a model with a known
answer (the ground truth) and emending the model with a differentiable loss func-
tion. RL is different. It does not require labeled data, or even data per se.

The central abstraction in the RL world is called an agent. The agent learns by
blundering about in an environment. Learning occurs through interacting with
the environment. The agent interacts with the environment seeking rewards that
reinforce the desired behavior. Over time the agent improves and learns how
to perform a task. To train an agent with RL there are some basic components
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required that are now defined. Let us now examine the environment and reward
more formally.

An agent learning how to behave in an abstract environment can be trained with
RL. The environment is provided by the people training the agent. The environ-
ment represents the problem domain. For example, if training an agent to play
chess, the environment must accept a move from the agent and update the state of
the game appropriately. The environment must also detect wins, losses, and draws.
By interacting with the environment, i.e. making chess moves, the agent learns
how to play. To learn, there must be reinforcement, both positive and negative.
Losing discourages bad moves and winning encourages good moves.

A task is accomplished by performing actions in an environment. An agent inter-
acts with an environment by sending it actions to change the state. An environ-
ment is the set,  , of all possible states for the problem under consideration. The
set can be infinite if continuous, such as a robot learning to walk, or the set can
be finite if it is discrete. A game such as checkers, which has ≈ 1040 valid board
configurations, has a finite, if large, state space. At time t the system is in the state,
st ∈  , where st is the state at that time. The system advances to a state, st+1, when
the agent sends an action to environment. The agent must grow adept at selecting
a good action to transition to a desirable new state.

An agent has a set of possible actions that it can take in the environment, . Of
particular importance is the set, (st), which is the set of all possible valid actions
when in the state, st. To change state, that is, transition from state st to st+1, an agent
must select and execute an action, a ∈ (st), that should ideally be an improve-
ment. The action selected and executed is, At. This leads to the notion of a reward
function. Interacting with the environment results in a reward function attaching
a measure of “goodness” or “badness” to the action. High rewards are sought after
and low rewards avoided.

This leads directly to the notion of best, and what is meant by it. A metric is
required for quantitative comparison. The means employed is a reward function,
R(s) ∈ ℝ. The reward must be computable for every action, but it does not have to
be defined. The reward function looks like, R ∶  → ℝ. At time t one action will
be selected, At, resulting in a new state and its reward, Rt+1(st+1).

The object of training is to produce a policy, 𝜋, that the agent can follow to nav-
igate the environment. The role of the policy is to select the actions that the agent
executes. To change state, an agent must select and execute an action, a ∈ (st).
The actions are selected by 𝜋, and it looks like 𝜋 ∶  → . As 𝜋 is the policy it is
responsible for selecting the “best” action. The action selected by 𝜋 is At. Sending
the action to the environment will result in the new state, st+1 and the reward, Rt+1.
The agent navigates through the environment producing the sequence of states,
{s0, s1,… , st} and their attendant rewards, {R0,R1,… ,Rt}. The sequence of states
is known as a trajectory.
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The outlines of an algorithm are now emerging. An agent employs a policy, 𝜋,
that when in state st selects an action, At, such that it maximizes Rt+1. More for-
mally, in st the policy 𝜋 assigns a probability of success to each action. The problem
of selecting an action is simply that of choosing the highest probability.

9.3.2 A Trivial RL Training Algorithm

There are many ways to train using RL. One approach is to model the problem as a
Markov Decision Process (MDP). Training an agent for a MDP problem results in
a policy that reduces the MDP to a Markov Chain. There are a number of means
of doing so, and this section presents the dynamic programming approach (11).

Figure 9.5 depicts an example of a trivial MDP. Figure 9.5a is the full MDP.
The states and actions are:  = {S0, S1, S2, S3} and  = {a0, a1, a2, a3, a4}. Black
arrows lead from states to actions. Light arrows lead from actions to the next state.
Light edges are labeled with the relevant probability of it being traversed if the

S0
S1

S2

a0

a1 a2

a3

S3

a4

P(st+1 = S0|st = S0, a = a0) = 0.1

P(st+1 = S3|st = S2, a = a3) = 1.0

P(st+1 = S1|st = S0, a = a0) = 0.9

P(st+1 = S1|st = S2, a = a4) = 1.0
P(st+1 = S0|st = S1, a = a2) = 0.7

P(st+1 = S2|st = S1, a = a2) = 0.3P(st+1  = S
2 |st  = S

0 , a = a
1 ) = 1.0

(a)

Figure 9.5 (a) Markov Decision Process and (b) the resulting Markov Chain following
computation of a policy, 𝜋, and applying it. Black arrows lead to actions and light arrows
lead to possible results of the actions. In the Markov Chain there is at most one black
arrow emanating from a state. This is the result of applying a policy to the MDP.
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S0
S1

S2

a0

a2

a3

S3

(b)

Figure 9.5 (Continued)

action is selected. Note that a particular action does not necessarily produce a pre-
dictable result. For example, when in state S0 and executing action a0 there are
two possible outcomes. Some of the states have multiple actions available to them.
The policy is responsible for selecting the action. Training an agent to produce a
policy result in the solution depicted in Figure 9.5b. The MDP has been reduced
to a Markov Chain as the policy has decided which action to take when in a given
state, e.g. 𝜋(S0) = a0. Consequently there is only one black arrow starting from any
state in the diagram; the policy chose the surviving arrows.

Training an agent with RL produces a policy, 𝜋, that performs a task to an accept-
able level. To motivate the method about to be presented, the initial state of train-
ing must be presented. This will motivate the algorithm while demonstrating a
fundamental trade-off when training with RL. To this end, we introduce a more
concrete example in the form of the game of tic-tac-toe.

The game of tic-tac-toe1 consists of drawing a 3 × 3 matrix. Two players take
turns placing either an x or an o on the board. The object of the game is for a

1 Tic-tac-toe is also known as noughts and crosses in some countries.
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player to place 3 of their pieces in sequence. Diagonal, horizontal, and vertical
series of 3 are all valid. This is an example of a zero-sum game; the winner takes
all. The game can be modeled as an MDP. Every valid board configuration is a
state in the MDP diagram (the game’s set, ). The actions are the valid moves
in a configuration. A player cannot place their piece in a square that is already
occupied, (st+1) = (st) − At. The set of actions consists of placing a piece in
one of the 9 possible squares on the board, ={(1, 1), (1, 2), (1, 3), (2, 1), …,
(3, 3)}, where the moves index the 3 × 3 board. Finally, the reward function is
defined as:

R(s) =
⎧⎪⎨⎪⎩

1.0 s = win

0.5 s = draw

0.0 s = loss.

(9.8)

To initiate training, and assuming the agent goes first and plays x, the first prob-
lem is to select one of the 9 possible moves. A problem immediately presents itself,
and there is no A0 such that R1 is defined, that is, one cannot win, lose, or draw
with an opening move. More information is required. The problem is known as
the sparse rewards problem, and not every move yields a reward. A mechanism
is required to communicate rewards received later in the game to earlier states so
that the policy can account for them. This idea is related to the following important
concept when training with RL techniques.

As the agent navigates its environment (plays the game) it moves from state
to state as the policy reacts to the opponent’s moves by selecting the action in
a given state with the highest reward. This is known as greedy action selection.
When the training algorithm accepts the greedy choice of the policy, it is known as
exploitation. During training, the object is to discover good behaviors, that involves
exploring new behaviors, experimenting with actions. Executing an action that is
not the best known at the time is an act of exploration. Exploration presents the
opportunity to discover unknown behaviors that may be superior to those already
observed. To achieve this, the policy is modified such that during training𝜋 accepts
the best known action with probability, 1 − 𝜖. 𝜖, a hyperparameter for training RL,
is the probability of randomly exploring. If the greedy action is rejected, then one
of the remaining valid actions is randomly selected. How to select 𝜖 is discussed
below. Exploration is the mechanism employed to learn about unseen phenom-
ena in the environment. A training algorithm employing exploration is known as
𝜖-greedy. 𝜖 can be viewed as the level of curiosity of the agent.

The tension between exploitation and exploration derives from the understand-
ing that instant gratification, the immediately optimal option, is not always the
best option in the long term. Postponing gratification in the hope that there is
something better in the future is clearly related to the problem of sparse rewards.
A means of accounting for the total reward along a trajectory (a path through the
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MDP graph) is required. This is captured with the idea of a value function. Value
functions are derivatives of reward functions, but not in the Calculus sense of the
word. The reward function is the instant gratification of an action. A value function
is based on the reward function, but it is a longer-term view of the reward function.
Value functions differ from reward functions in their time-scale and reflect plan-
ning. For most people, surgery is painful and has a low reward. Its value, however,
is high. In the long run, it can increase life span or may increase the baseline of a
reward function by fixing a chronic problem such as back pain or cataracts. One
way to compute value is to calculate the expectation of reward with respect to a
given action and state tuple, (si, aj):

Qn+1 ∣ (si, aj) = 𝔼(R) =
R1 + R2 + · · · + Rn

n
, (9.9)

Q defined in Eq. (9.9) is the action value function. It captures the long term payoff
of pursuing the action in the state. Note that n and the subscripts are not time,
they are the number of observations, that is, the number of times during training
the action was executed in that state. During training, a game will be played many
times. For example, the opening move of the agent in tic-tac-toe might be to place
an x in (2, 1), then Eq. (9.9) is computing the expectation for that particular move
for an empty board. In the initial state of tic-tac-toe all moves are valid so the agent
would maintain 9 action values, one for each move, to learn the best move. As
defined Qn is not suitable for computation as it requires storing far too much data
(even for a trivial game such as tic-tac-toe, which has 19,683 valid states, ignoring
symmetry). A different form of the equation is required that is more suitable for
implementation:

Qn+1 = 1
n

n∑
i=1

Ri

= 1
n

(
Rn +

n−1∑
i=1

Ri

)

= 1
n

(
Rn + n − 1

n − 1
⋅

n−1∑
i=1

Ri

)

= 1
n
(Rn + (n − 1) ⋅ Qn)

= 1
n
(Rn + n ⋅ Qn − Qn)

= Qn + 1
n
(Rn − Qn). (9.10)
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Equation (9.10) is an example of a temporal difference equation. It is far more
suitable for a practical implementation. The equation requires the storage of two
values, Qn and n (number of times the action was executed in that state). A law
of large numbers argument suggests that as the number of training runs increases
(9.10) will converge to the correct action value for the action.

Armed with a means of computing the value of actions and a reward function
the training of an agent to learn tic-tac-toe can be presented. It is a table-driven
approach. When training every valid state has a table of action values. The policy
selects the action with the highest value. Ties are broken by selecting one ran-
domly. The proposed action is executed leading to the next state. The opponent
simply chooses an action randomly (skill does not matter, it makes the value func-
tions more accurate as all permutations are executed, or an agent can play itself).
The cycle is repeated recursively until a reward is obtained. In the case of tic-tac-toe
a training run can have a maximum trajectory length of 9 states. When a terminal
state is reached the reward is consumed by the action that actuated it by updating
its action value for that state. The updated value, not the reward, is then passed to
the immediate predecessor agent state in the trajectory.

Figure 9.6 demonstrates the core ideas for a simple game such as tic-tac-toe.
There is a global dictionary, Policy, that returns the per state policy, Z, which is 𝜋s.
Z includes the per action value for the state and the number of times that each
action has been invoked. They are called Qn and n, respectively. The reward
function was designed such that it can be interpreted as a probability and the
expectation definition preserves that property. Selecting the highest value can be
interpreted as choosing the action with the highest probability of winning.

The routines in Algorithm 9.2 demonstrate some of the principles of training
with RL. They are used by Algorithm 9.3 to learn how to play tic-tac-toe. It must
be emphasized that tic-tac-toe is a trivial problem, but there were still challenges.
The required pieces were the environment and the reward function. It is argued

A0 = (2, 1)

Z = Policy[s0]
Z.Q[4] = Qn(Z.Q[5], Z.n[4])

Z = Policy[s2]
Z.Q[5] = Qn(Z.Q[6], Z.n[5])

Z = Policy[s4]
Z.Q[6] = Qn(R5, Z.n[6])

R5 = 1.0

A 4
 =

 (2
, 3

)

A 2
 =

 (2
, 2

)s1 s2 s3 s4 s5

Figure 9.6 An example training run for tic-tac-toe. The progression of the game is from
left to right. The agent’s moves are labeled with the action, At . The result of this game is
a win for the agent. A4 results in s5 and R5 = 1.0. The reward is consumed and values are
updated backward through the trajectory of moves. The linear indices for Z are
row ⋅ 3 + column.
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Algorithm 9.2 Implementation of a Policy for Tic-Tac-Toe
1: procedure 𝜋(s)
2: Z ← Policy(s)
3: index ← argmax

index
Z.Qn[index] ⊳ Greedy selection

4: agreedy ← (𝗂𝗇𝖽𝖾𝗑)
5: explore ← (𝗌𝖺𝗆𝗉𝗅𝖾 ∈ [0, 1]) ≤ 𝜖

6: if explore then
7: return random ((s) − agreedy) ⊳ Try anything but the best action
8: end if
9: return agreedy

10: end procedure

that unsupervised training techniques are easier as a training set does not need
to be curated. It is clear, however, that it merely substitutes one problem for
another, and the challenge should not be underestimated. The reward function
for tic-tac-toe is very simple and intuitive. For a trivial zero-sum game a reward
function is relatively easy to construct. The reward function for a robot learning
to stand, or a hand learning to grasp a glass bottle is far more complicated (and
not obvious). Games with deeper game trees may have to address the problem of
sparse rewards. Google’s Go implementation did manage to train with a zero-sum
terminal reward function (139), but it is not always possible. The 19 × 19 board
used in their implementation can have trees that are 1048 moves deep. For
complicated tasks the reward function itself can be learnt. Apprentice learning
describes itself as inverse RL as it attempts to recover a reward function from a
solved system (2). Stochastic approaches, such Hindsight Replay, have also been
successful (5).

The representation of the policy for tic-tac-toe is expensive. The table driven
approach provides for the explicit storage of the 𝜋s and is simply not feasible for any
interesting problem. Q-Learning is one solution (160) as it takes better advantage
of the MDP property of the problem and does not require tables. Action values
make sense for simple applications, but for more complicated problems state value
functions, V , are used.

RL is a powerful technique for building machine learning models. It is partic-
ularly useful when there is no training set available and the desired outcome is
more behavioral. It should not be viewed in isolation from ANNs. The two fields
are very much intertwined and growing ever more so. RL can be used to train neu-
ral networks and neural networks can be used to train RL models. This mutually
supporting relationship is only set to grow. This section was a necessarily brief
introduction, but it is hoped that the essence of the paradigm has been conveyed.



�

� �

�

9.4 Natural Language Processing Transformed 193

Algorithm 9.3 Learn a Policy to Play Tic-Tac-Toe
1: procedure TRAIN AGENT(N)
2: for i ∈ N do ⊳ Training consists of playing N times
3: RunGame ()
4: end for
5: end procedure
1: procedure RUNGAME

2: s0 ← Empty Board

3: trajectory ← ∅
4: for i ∈ 1:9 do
5: At ← 𝜋(st)
6: trajectory.push (st, At)
7: st ← Execute (At, 𝖠𝗀𝖾𝗇𝗍)
8: if Rt ← Reward (st) then
9: break

10: end if
11: t ← t + 1 ⊳ The opponents turn
12: aopponent ← random ((st))
13: st ← Execute (At, 𝖮𝗉𝗉𝗈𝗇𝖾𝗇𝗍)
14: if Rt ← Reward (st) then
15: break
16: end if
17: end for
18: Qi ← Rt
19: while trajectory ≠ ∅ do
20: s, a ← trajectory.pop ()
21: Z ← Policy (s)
22: index ← index (a)
23: Z.Qn[index] ← Z.Qn[index] + 1

𝖹.𝗇[𝗂𝗇𝖽𝖾𝗑]
⋅ (Qi − 𝖹.𝖰𝗇[𝗂𝗇𝖽𝖾𝗑])

24: Z.n[index] ← Z.n[index] + 1
25: Qi ← Z.Qn[index]
26: end while
27: end procedure

9.4 Natural Language Processing Transformed

This section presents transformers in the context of natural language process-
ing (NLP). Transformers are the basis of most natural language processing
applications today. They were presented in a landmark paper that described
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transformers in their current form, “Attention is all You Need” (155). The authors
showed that a well-known technique, attention, could be used by itself to address
the problem of relationships between words in language. Transformers have
wider application, but it is the problem domain of natural language that they
have had the biggest impact. The paper described a refinement of attention
called self-attention implemented with a transformer. Transformers not only
perform better than previous methods, but they overcome the inherent sequential
nature of earlier methods and naturally support parallel processing, an important
consideration when using GPUs. The output of transformers is vital for use in
“heavy” NLP applications that consume it downstream in the text processing
pipeline. ANNs consume the output of transformers when they are training for
NLP domain problems. Transformers process text that can then be used for classi-
fication, regression, and generative purposes. Since its publication self-attention
has been wildly successful and arguably set off off the current NLP revolution.

An important challenge facing AI is to facilitate communication between com-
puters and humans. The ideal is for computers to learn how humans speak, not
vice versa. Currently, humans are subject to the strictures that computers impose
on them when they interact. The onus is on people to comport their practices to
those of computers; the machines dictate to the humans. Computers are dumb
calculators and do not grasp the intricacies of human language. NLP is the field
of teaching computers to competently deal with human modes of language. The
subject of NLP is worthy of a volume in its own right and any attempt to present it
in a single section can only scratch the surface. For a thorough treatment of NLP
the reader is directed to (77).

Humans employ a different class of language when communicating with
each other than they do with computers. The problem arises from the inherent
differences between the natures of computers and people. Computers only
understand numbers represented as binary integers. Human language consists
of words and context. Despite the differences the gap has been partially bridged.
There are many examples of computer languages that humans can employ to
instruct a machine: C, Python, Rust, Lisp, Swift, Smalltalk, Pascal, Basic, Java…
the examples are legion. The list is by no means exhaustive. There are thousands.
Humans have instructed computers using computer languages for decades, but
they are special languages. The field of computer languages, also referred to as
programming languages, is an active and important area of computer science
research. Humans can communicate with computers, but any programmer would
agree, only in a very superficial and exhausting way. Computers languages are
a different type of language than human language, and are specially designed.
Programming languages are context free grammars. Human languages have
context and ambiguity.
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9.4.1 The Challenges of Natural Language

Natural language presents two specific challenges to a computer. Computers are
“dumb”; a computer is effectively a mathematical automaton. Human languages
consist of words and grammar, and both are minefields for a computer that is
incapable of inferring context.

Words in human languages can have multiple senses and the sense meant is
inferred from implicit contextual information. Homonyms also give computers
trouble; the sense meant is not explicit in a sentence. The words meat and meet
are problematic for speech recognition software. In written text lie can mean
either horizontal or a conscious untruth. Humans have little trouble dealing
with either situation because the context usually makes the meaning clear, but
even humans can disagree over what a sentence means. In contrast computer
programs are unambiguous and have a single and provable interpretation.

Humans derive the context from many means, including body language, intona-
tion, and emphasis.2 NLP concentrates on grammatical cues. A word’s sense may
depend on its position in a sentence (spatial dependency). The semantic meaning
of word in a sentence may be modified by words in other clauses in the sentence.
This can be ambiguous linguistically and people use context to infer what is meant.
Consider the following examples:

1. The person did not cross the road because it was tired.

From the context, it is clear that the person was tired. Roads do not get tired.
2. The person did not cross the road because it was wide.

From the context, it is clear that the road was wide. People are not wide.
3. The person did not cross the road because it was busy.

Even for a human, this sentence is ambiguous. Either noun could reasonably
be considered busy and so the sentence has multiple semantic meanings.

Human language relies on context. Context is important when determining the
full import of a sentence. Synonyms and homonyms are (usually) easily handled by
the humans. Computers have trouble extrapolating meanings sensibly. The chal-
lenge of NLP is to surmount these obstacles. The resulting software and models
are infinitely more complex than a C++ compiler or a Python interpreter.

9.4.2 Word Embeddings

A fundamental abstraction ubiquitous in modern NLP is the word embedding.
Word embeddings form the basis of almost all NLP systems. It is the abstraction,

2 Hence the joke, Teacher: “A double negative makes a positive, but not vice-versa.” Student:
“Yea, right.”
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the basic building block, that higher level NLP tools are built with. This section
motivates and outlines their use.

Sentences are comprised of words, but computers only understand numbers.
The first task is to convert a word to something that a computer program can han-
dle. A trivial means of accomplishing this is called tokenizing. A static dictionary
can map a word, and its inflections (e.g. take and took), to a unique integer. The
representation can be augmented by attaching the part of speech as well. This is
not a very good system as homonyms break it immediately. There is also no infor-
mation contained in the numeric representation. More than a token is required.
In addition to the token, the meaning of the word must be captured. This would
seem to lead to a catch-22. The definition of a word is yet more words leading to
more definitions. A means of representing the meanings of words mathematically
is clearly indicated.

A powerful means of representing words are vector semantics. Words can
be represented with vectors. The vectors are embeddings of words in a vector
space that captures the semantic meaning of a word; the vector space is called
a semantic space. The method is known as word embeddings; the meanings
of words are embedded in the semantic space. The vectors are the means of
encapsulating words for use by an NLP system. The word embeddings are vectors
that encapsulate the meaning of a word, and they are numerical. Computers are
good at dealing with vectors, and indeed that is why such a representation was
selected. Representing words as vectors implies that the full force of mathematics
can be brought to bear on them.

A word embedding should have certain properties. For the embeddings and
mathematical operations to be useful the linguistic value must not be lost. The
mathematical operations should makes sense linguistically in the word space.
The vectors are elements of a vector space so a measure of distance can be defined
for them. The measure should reflect linguistic relationships. Dog, cat, tea, and
coffee are all different words so they will have unique embeddings. Let xword be the
embedding of word. The following relations should hold: xdog − xcat < xdog − xtea
and xtea − xcoffee < xdog − xtea. And further, xmammal − xcat < xmammal − xsoda. The
distance between word embeddings is known as similarity, and a good word
embedding will define a useful measure that captures similarity. It should
naturally capture synonyms and conceptual relationships.

Word embeddings can be implemented as static dictionaries. The dictionaries
are surprisingly easy to generate. An NLP application has a text domain of concern,
a corpus (e.g. 10,000 legal opinions), and the corpus can be treated as a training set.
Words that occur close to each other are usually related, this is called the distribu-
tional hypothesis, and forms the basis of learning an embedding. The word, judge,
is more likely to be in the same sentence with lawyer, opinion, or judgment than
soup or beetle, and this is naturally reflected in the corpus. This property is called
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self-supervising, and does not require explicit labels. Processing the text it becomes
clear that the word judge is connected with lawyer, but not giraffe. An application
developer chooses the dimension of the embedding, ℝd, and then trains the dic-
tionary. Once trained the dictionary is used by calling it with a word’s token. The
dictionary returns the word embedding, which is a vector: dict(judge) → xjudge.
The vector is real-valued and dense. Word2vec is the canonical example of this
approach (104). Once the embeddings have been computed they can be used with
a model; they are the input that can be used with an ANN. The dimensionality of
the word embeddings does a better job of capturing the multiple senses of a word,
but it is not ideal. Nor does an embedding give any indication of which sense is
meant in the current sentence or its effect on other words.

Word embeddings are typically required to produce vectors that are normalized,||x|| = 1. The set of embeddings describe the surface of a hypersphere, that is, a
sphere in d dimensions. Recall that the dot product is defined as,

x ⋅ y = ||x|| ⋅ ||y|| ⋅ cos(𝜃), (9.11)

where 𝜃 is the angle between the two vectors. The dot product is the projection
of x on to y. When dot products are used with normalized vectors the result is
the cosine of the angle between them. This property applies to word embeddings.
Word embeddings are normalized so the dot product is the cosine of the angle
between the embeddings. Word embeddings can be designed to make the cosine
meaningful. It is often the cosine that is used as a measure of similarity, not the dif-
ference used in the example above. The method is called cosine similarity. Similar
words will have similar embeddings. The angle between them will be small. As
the angle grows smaller the cosine approaches 1. Large angles connote little sim-
ilarity and cosine approaches −1. The intuitive interpretation and the range of
cosine ≤ ±1 make cosine similarity very attractive mathematically.

Word embeddings makes it possible to encode text such that computers can
make sense of it. A sentence of length n is a sequence of tokens, t1, t2,… , tn. The
sentence is processed in sequence from 1 to n producing the set of embeddings,

{x1 = dict(t1),… , xn = dict(tn)}. (9.12)

Given a sentence with n words, a matrix can be built by placing each word embed-
ding row-wise in a matrix (the transpose of the vectors, xt

i ):

E =

⎛⎜⎜⎜⎜⎜⎝

xT
1

xT
2

⋮

xT
n

⎞⎟⎟⎟⎟⎟⎠
. (9.13)
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The embeddings matrix can be used to multiply one of the word’s embedding,

Exi = si. (9.14)

The result is a vector of the similarities between the word and all of the words in the
sentence. si is the projection of the word xi onto the rest of the sentence. Moreover,
EET = S, is a matrix of the similarity vectors for all the words in a sentence, column
wise. The diagonal will be exclusively 1s as self-similarity has a cosine of 1, 𝜃 = 0.
This property is very useful for NLP systems, especially those that are matrix based,
such as ANNs.

Word embedding is a very powerful tool for dealing with natural language appli-
cations. They do, however, leave something to be desired. Recall the list of contex-
tual sentences above. The meaning of some words depended on words in other
parts of the sentence. A sentence must be examined simultaneously in its entirety
to encapsulate it fully. A static mapping from a word to its vector does not account
for context. The word’s relation to other words in a sentence is important when
determining its meaning, or even the value of its contribution to the sentence.

Representing words with vectors that account for context is a language model.
A language model can also be predictive, that is, produce the distribution of tokens:
P(ti ∣ ti−1). Predictive language models can be turned around and made generative.
If the model can predict tokens well then in reverse it can also produce them. Word
embeddings are sufficient for many applications, but applications that must really
understand or mimic human language require language models. Language mod-
els are the basis for chatbots such as ChatGPT (GPT is the name of the language
model) and many others. The current state of the art for building language models
is the transformer. It is the transformer that forms the subject of the Section, 9.4.3.

9.4.3 Attention

Attentive processes are operations that prioritize a subset of information. They can
be thought of as providing focus on a particular aspect of a problem. Recalling the
embeddings in Eq. (9.12), there is a clear limitation. The individual word embed-
dings have not utilized any information about other words in the sentence; each
embedding was performed in isolation.

For a token, ti, how does the model handle the information latent in some
token, tj, that has already been seen but is now forgotten ( j < i) or is yet to be
observed ( j > i). Moreover, processing a sentence is sequential, and the job of a
language model is to predict the j > i. Accounting exclusively for earlier tokens in
the sentence is of particular importance and is called causal. There are two related
problems when attempting to incorporate relationships between words. The first
is producing a means of detecting the relationships between words in a sentence.
The second problem is the question of how to represent the relationships.
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Relating words in a sentence is known as attention. Attention increases the impor-
tance some items and decreases the importance of others; it focuses attention on
the most important subset of information.

A simple method to produce attention is to compute a vector of weights that can
be applied embeddings,

a = (𝛼1,… , 𝛼n). (9.15)

The weights have the following property:
n∑
𝛼i = 1, 𝛼 ≥ 0, (9.16)

where all the weights are nonnegative. In the case of accounting for only those
tokens already seen up until ti a modification is required:

i∑
j=1
𝛼j = 1. (9.17)

The weights are computed at inference time, so they are called soft weights. The
idea of computing weights during inference was introduced in a generative text
setting (53), but it quickly proved useful for comprehension as well. This is in
contrast to normal weights, parameters of a model, which are fixed following the
conclusion of training. The attentional soft weights can be used in a dot product
with the sentence to attenuate the elements appropriately. One means of comput-
ing attention is to employ the embedding matrix to compute the similarities. The
similarities are then construed as importance and used for attention.

ai = softmax(Exi). (9.18)

Equation (9.18) produces the vector of attentional weights, ai, for the word xi.
The softmax function ensures that the similarities meet the constraints defined
in Eq. (9.16). By computing the attention with the entire sentence words are con-
nected across distance. A new embedding can now be computed that accounts for
attention with the soft weights,

yi =
i∑

j=1
𝛼j ⋅ xj, (9.19)

where the 𝛼j is the jth entry in the attention tuple, a scaler. The new embedding is
a convex linear combination of nearby words scaled by their attention scores. The
resulting embedding accounts for the importance of other words in the sentence
by incorporating their similarities in its embedding.

The use of similarity for attention is an improvement over static word embed-
dings, but it is not ideal. In particular, it assumes quality word embeddings and
a useful measure of similarity. A further refinement described by Vaswani et al.
in their attention paper is self-attention. They proposed a scheme that employed
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learned matrices. The computation of attention was decomposed and abstracted
presenting the opportunity to introduce multiple learned matrices in the compu-
tation. The matrices are trained with backpropagation of error and SGD. This is
the idea that is the basis of the transformer.

9.4.4 Transformer Blocks

Transformers are made up of transformer blocks stacked on top of one another.
The output of one transformer block is the input to the next. To understand how
transformers work transformer blocks need to be described. A transformer block
consists of two pieces. The input layer performs a computation that is similar to
attention just described, and the output uses a neural network.

Further abstraction of the process of computing attention is required to under-
stand transformers. The word embeddings in Eq. (9.14) play many roles. It is useful
to examine each one in isolation. The argument to the embedding matrix, the vec-
tor being projected (multiplied), can be viewed as a query. The computation is
being carried out with respect to the query vector. The embedding vector xi is the
current focus of attention (hence the name, self-attention). The rows of the embed-
ding matrix are similar to those of keys. Keys map the query to potential candidates
that may be of use. The query was projected onto the keys with Eq. (9.14). The
resulting vector was normalized with Eq. (9.18) to produce the attentional vector.
The attentional vector was used in Eq. (9.19) with a value vector to produce the
final embedding (in this case, the value vector was xi). The keys are used to map
a query to a value. Learning can be introduced into the problem by using learned
matrices of parameters for each of the three tasks. The three roles in a transformer
block computing self-attention are performed by:

q = W qx

k = W kx

v = W vx, (9.20)

where three learned matrices of weights have been introduced. They are, in order
of the enumeration in (9.20), query, key, and value. The superscript denotes their
identity. The weights matrices are used to multiply the input word embedding to
produce the vectors required for self-attention. For a predictive model only those
tokens already seen are included. When processing token i Eq. (9.20) are applied to
all xj, j ≤ i. Laying out the resulting vectors row order in matrices produces matri-
ces that look like,

Qi =

⎛⎜⎜⎜⎜⎝
(W qx1)T

(W qx2)T

⋮
(W qxi)T

⎞⎟⎟⎟⎟⎠
. (9.21)
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For x ∈ ℝd, Qi is a i × d matrix. The same is done to produce a keys matrix, K, as
well as a values matrix, V . Continuing with the computation the next step is to
find the attentional weights. The weights are calculated with the query and key
matrices,

a = softmax

(
Kiqi√

d

)
, (9.22)

where the weights vector, a, will have i entries. The dot product has been scaled
by dividing by

√
d where d is the dimension of the input vectors. The similar-

ity computations based on normalized vectors produced cosine of angles, which
are between ±1. The new learned matrices can produce arbitrarily large dot prod-
ucts and so the scaling is required to ensure the numerically stable operation of
softmax. With the weights computed the final attention can be computed with the
value vectors.

yi =
i∑

j=1
𝛼j ⋅ vj, (9.23)

where the 𝛼j are scalers. The new vector is a linear combination of the value vectors
scaled by the weights. The final operation of the self-attentive layer is to apply a
residual connection and then to normalize.

yi = layerNorm(yi + xi). (9.24)

Layer normalization is described in Section 7.5.2. The residual connection trans-
mits information deeper into a network by jumping over an intermediate, parallel
layer. It also helps with training as the gradient will be stronger as it skips the same
component in the backward direction (64). Following the self-attention layer the
final result of the transformer block is produced by using an ANN.

zi = layerNorm(ANN(yi) + yi). (9.25)

The result is residually connected and then normalized to produce the final output.
The exposition so far has been vector-centric; the focus was on computing the

self-attention for a single token. There is no reason why more than one token can-
not be processed at once. Indeed, for a sentence of length n all the computations
can be performed in parallel with matrix multiplications. A matrix of the input
vectors is used instead of the individual vectors. X is composed by stacking the xT

i
in row order. As they are in row order the parameter matrices are the right-side
factors in the multiplication.

Q = XW q

K = XW k

V = XW v. (9.26)



�

� �

�

202 9 Vistas

The matrix formulation that results can be efficiently implemented with matrix
software for either CPUs or GPUs.

SelfAttention(Q,K,V) = softmax

(
QKT√

d

)
V . (9.27)

The result is a self-attention matrix. The matrix product, QKT will need the upper
triangle marked as −∞ to ensure that they do not contribute to the softmax
operation. This preserves the property that self-attention calculations only use
previously seen tokens for each token position.

A transformer consists of stacking the transformer blocks (the original paper
used 6). The architecture is presented graphically in Figure 9.7. Input arrives and
it percolates through the transformer blocks in sequence. The output of a block
forms the input to the next. After the final transformer block has finished the result
is a matrix with the new embeddings. The result has the same dimensions as the
input matrix. A transformer block has four trainable pieces. They are the three
weights matrices and the ANN.

Algorithm 9.4 illustrates the complete process for self-attention. It is invoked
with text, e.g.: Transformer (“Transformers are powerful tools.”). The first step

Z Z

Layer normalization

Layer normalization

Feed-forward ANN layer

Self-attention layer: softmax

Transformer block

Transformer block

Transformer block

Transformer block

Transformer block

Transformer block

Transformer block

Transformer

X

QKt

d
V

X =

x1
t

x2
t

xn
t

···

Figure 9.7 The transformer architecture. The figure on the left depicts the transformer
block. The block consists of 4 layers. A transformer consists of stacking the discrete
blocks to form a composition.
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Algorithm 9.4 Self-Attention Transformer
1: procedure TRANSFORMER(Sentence)
2: n ← 𝗅𝖾𝗇𝗀𝗍𝗁(Sentence)
3: for i ∈ 1 ∶ n do
4: X[i] ← (𝖽𝗂𝖼𝗍(i,Sentence[i]))T ⊳ Initial Word Embedding
5: end for
6: Z ← X
7: for Tb ∈ Transformer do ⊳ Done with every transformer block
8: Q ← Z ⋅ Tb.W q

9: K ← Z ⋅ Tb.W k

10: V ← Z ⋅ Tb.W v

11: Ȳ ← 𝗌𝗈𝖿𝗍𝗆𝖺𝗑
(

QKT√
d

)
V ⊳ self-attention

12: Y ← 𝗅𝖺𝗒𝖾𝗋𝖭𝗈𝗋𝗆(Ȳ + Z)
13: Z̄ ← 𝖠𝖭𝖭(Y )
14: Z ← 𝗅𝖺𝗒𝖾𝗋𝖭𝗈𝗋𝗆(Z̄ + Y )
15: end for
16: return Z
17: end procedure

is to preprocess the text. The text is tokenized followed by a static word embed-
ding. Both tasks are performed by dict. This produces the initial set of vectors for
the transformer. The embedding includes positional information in the sentence,
hence i is passed into dict as well as indexing the sentence. The initial embeddings
are then passed on to the transformer. The data percolates through each trans-
former block until the last one is reached. Each block computes the self-attention
and then runs it through an ANN. After the data exits the transformer, it is ready
for use by a downstream model.

An important implementation note. Each transformer block has its own set
of learned matrices, and the dimensions are fixed at training time. A real trans-
former prescribes n. The original attention paper used a value of 512. This means
that 512 tokens need to be passed in at a time. The initial vector, X , will have a
dimension of n × d. If less than n tokens are available then it needs to be padded
with a special “null” embedding that will not contribute to the self-attention. The
matrix product, QKT , has n2 entries. It grows quadratically with the length of the
input. Selecting the size of n needs to be done carefully to avoid excessive memory
consumption. The more usual problem is the opposite of an insufficient num-
ber of tokens, but rather, having a document that is too long. When there are too
many tokens for a single invocation the transformer is invoked multiple times with
n-sized subsets.
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9.4.5 Multi-Head Attention

The weight matrices in the transformer blocks are learned. During training, they
attempt to discover relationships between tokens. Transformers work well, so they
do learn, but it is not always clear what they are learning. Recall the motivation for
multiple convolutional filters for detecting features in images in Section 6.2. It was
argued that it is useful to detect multiple features to increase the chances of classi-
fying images correctly. A filter layer consisted of multiple filters applied in parallel
with dedicated feature maps. This led to learning more relationships in the data
and made the model more accurate. The same argument holds for transformer
blocks.

To capture as many useful linguistic patterns as possible multiple sets of query,
key, and value weight matrices can be trained. The result is called multi-head
self-attention. Each set of weight matrices is considered a head. A transformer
block with h heads has a set of h weight triples of the form, {{W q

1 ,W
k
1 ,W

v
1},… ,

{W q
h ,W

k
h ,W

v
h}}. The h sets of parameter matrices are used to compute

self-attention in parallel (and on the appropriate hardware concurrently).
Multi-head transformer blocks are similar to multi-filter CNN layers. Following
the h parallel self-attention calculations the h vectors are stitched together with
concatenation,

Y = Y 1 ⊕ · · ·⊕ Y h ∈ ℝn×h⋅d. (9.28)

The concatenation is row-wise, that is, the number of columns increases. A prob-
lems arises respecting the dimensions of Y . It does not conform to the dimensions
of the input vector or the expected output vector. It has d × h columns. The input
and the output of transformers, hence also transformer blocks, must have the same
dimension. Transformer blocks can be stacked arbitrarily so the dimensions of
input and output must be in agreement. To address the mismatch another step is
introduced in the transformer blocks to shrink Y down to the required dimensions.
The concatenated vector is projected to produce the final vector of the correct
dimensions. The projection is effected with a learned vector, W o ∈ ℝh⋅d×d, that has
the correct dimensions,

Y p = YW o ∈ ℝn×d. (9.29)

Only one W o is required per transformer block. It can be construed as learning
how to weight the various heads, or discovered linguistic features, in the block.
The projection is performed prior to invoking a block’s ANN. The final output of
the multi-head transformer block thus produces the correct size vector. Multi-head
self-attention transformer blocks are stacked as usual to produce a multi-head
transformer. Figure 9.8 displays the resulting layout of a single transformer
block.
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Figure 9.8 The transformer block
for multi-head attention. The
changes are confined to the
self-attention portion. There are
now multiple computations of
self-attention. The learned matrix
Wo projects them in preparation
for the final step, layer
normalization with the residual
connection.
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The complete algorithm is presented in Algorithm 9.5. Multi-head self-attention
is powerful because it is learnt. Analogously to CNN filters many heads can be
trained to learn features in the training set corpus. Natural language is complex
and so multiple layers are required to extract the linguistic features.

9.4.6 Transformer Applications

Transformers are used to build language models. Language models are used in
turn to build applications. The output of a language model can be fed to a down-
stream model that specializes in the language model for a task, such as a chatbot
or an email scanner. Transformers and self-attention led to enormous improve-
ments in NLP. Almost all language models are now transformer based. Google’s
attention paper was followed with a publication describing their language model,
BERT (33). Google’s conversation technology, LaMBDA (149) is based on BERT.
Amazon’s Alexa uses transformers (143). OpenAI’s GPT family of libraries are
based on transformers (118). The ChatGPT chatbot is based on GPT (108),
so it is a transformer-based model. Apple has invested heavily in transformer
technology (6). The Microsoft and NVIDEA collaboration Megatron-Turing is a
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Algorithm 9.5 Multi-Head Transformer
1: procedure TRANSFORMER(TextBlock)
2: for i ∈ 1 ∶ N do ⊳ The length is a model parameter
3: X[i] ← (𝖽𝗂𝖼𝗍(i,TextBlock[i]))t ⊳ Initial Word Embedding
4: end for
5: Z ← X
6: for Tb ∈ Transformer do ⊳ Done with every transformer block
7: Ȳ ← ∅
8: for head ∈ Tb do ⊳ Done for each head in a block
9: Q ← Z ⋅ head.W q

10: K ← Z ⋅ head.W k

11: V ← Z ⋅ head.W v

12: Ȳ ← Ȳ ⊕ 𝗌𝗈𝖿𝗍𝗆𝖺𝗑
(

QKt√
d

)
V ⊳ self-attention concatenated

13: end for
14: Y p ← Ȳ ⋅ Tb.W o

15: Y ← 𝗅𝖺𝗒𝖾𝗋𝖭𝗈𝗋𝗆(Y p + Z)
16: Z̄ ← 𝖠𝖭𝖭(Y )
17: Z ← 𝗅𝖺𝗒𝖾𝗋𝖭𝗈𝗋𝗆(Z̄ + Y )
18: end for
19: return Z
20: end procedure

transformer-based system (141). While there are concerns that language models
are growing too powerful, (12), there is too much at stake and the relentless race
to build better ones will almost certainly continue. Switch-C is setting the stage
for trillion+ parameter language models (40).

The applications of language models are legion. Anything that involves natural
language is a potential application. Language translation performance has dra-
matically improved with transformer technology. Legal document summarization
saves a great deal of money. It is sufficiently accurate for some applications that
paying lawyers to read routine material is no longer required. NLP agents that
monitor news feeds keep abreast of enormous quantities of news automatically,
and reliably. News monitoring is important to many organizations such as gov-
ernments and the trading floors of banks, and it can take many forms. Televisions
monitors or online news feeds such as Reuters and Bloomberg create automatic
alerts and executive summaries. Routing emails reliably saves hiring personnel to
monitor group mailboxes. ChatGPT has been acknowledged as an author on sci-
entific papers (146). The latest OpenAI technical report on GPT-4 acknowledged
ChatGPT for producing summaries of text and as a copy-editing tool (1).
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Of significance is the wide availability of pretrained language models based on
transformers. While they are available as commercial products, there are also some
that are open source. The ability to download and use pretrained language models
have led to an enormous increase in the power of even simple derivative models.
Training transformers requires more resources than are generally widely available.
The Attention paper reported 3.5 days for training on an 8 GPU system. A pre-
trained language model can be downloaded then attached to a downstream ANN
that consumes its output. Only the downstream ANN requires training, or “fine
tuning.” The ANN ingesting the output of the language model is specialized for
the desired application. The resources required are modest as the language model
is already trained. Pretrained models can be used to train applications on even a
modest notebook computer. The wide availability of pretrained models has dra-
matically increased access and facilitates NLP research and pedagogy that would
otherwise be impossible.

It is difficult to understate the impact of transformers on NLP tasks, and since
their introduction in 2017, there has been tremendous progress in many NLP
problem domains. They continue to attract a tremendous amount of mind share.
In terms of investment and research money, the commitment to transformer
based technology only seems to be accelerating. Transformers clearly have a
bright future, and they have only just started their journey. Finally, it is suggested
that the Turing Test is probably too dated for use as a test for artificial intelligence.
Transformers have moved the goal posts.

9.5 Neural Turing Machines

We conclude with another approach to learning tasks. Section 9.3 demonstrated
how to use RL to build agents that learn how to perform tasks. Neural Turing
Machines (NTM) attempt to train models to learn a program to perform a task
(54). The difference between RL and an NTM lies in how the task is expressed.
Training an agent to perform a task with RL produces a policy. Training an NTM
produces a program. As the name implies, the program is learnt in the context of
a Turing Machine, a simple yet powerful model of computation.

An exhaustive introduction to the Turing machine3 is beyond the scope of this
book, but a brief review is indicated to understand the approach of the NTM.
A Turing Machine is a mathematical abstraction conceived by Alan Turing in 1936.
His object was to design a model of computation with which to examine funda-
mental theoretical questions connected to computability. The Turing Machine’s
enduring importance lies both in its simplicity and power.

3 Turing called them a-machines, Turing machine was coined by his PhD supervisor, Alonso
Church.
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A Turing machine is a finite-state automaton. It has a finite set of states,
{q0, q1,… , qn}. The automaton processes an infinitely long tape that represents
persistent external state. The tape consists of a string of records. Each record is
precisely one symbol from a finite alphabet, {s0, s1,… , sm}. The tape is accessed
by a head that can read and write the tape. One record can be accessed at any
given moment, that is, in any given state; the record under the tape head. The tape
can be moved one record at a time, either to the left or to the right. Taken together,
the automaton and the tape can be viewed as a computer. The automaton is the
CPU controlling the I/O with the tape. The machine reads a record, changes state,
and then acts on that state, e.g. writing a symbol, si, to the tape or moving the
tape. A Turing machine has been shown to possess the capacity to execute most
algorithms, and in fact is the standard for determining the computing capability
of a system (e.g. a programming language). This is done by showing that the
system under consideration can simulate a Turing Machine. A system that can
simulate a Turing Machine is considered “Turing Complete.” For a thorough
treatment see (24).

The object of the NTM is to simulate a Turing machine with ANNs, but not slav-
ishly. The NTM model is based on a Turing machine, but does not pedantically fol-
low it. A Turing Machine is the framework for the NTM model. An NTM might lie
somewhere between a Turing Machine and a Von Neumann Machine. There are
two components of a Turing Machine, the automaton and the tape. They serve very
different functions. An NTM needs to simulate those pieces, and this is how the
analogy to a Turing Machine arises. An NTM is an amalgamation of two distinct
models, an ANN that acts as the automaton, called the controller, and a second
model that acts as the tape, known as the memory. The architecture is interesting
in its own right in that it is an example of the synthesis of specialized functions
with distinct responsibilities. The result is greater than the sum of its parts. Animal
brains have similar layouts with dedicated regions responsible for specific tasks.
This is different from a CNN, where individual layers might be different, but the
layers are all contributing to the single task of the CNN; it only has one function.
Indeed, it is not difficult to imagine including a CNN in an NTM as a distinct com-
ponent to help the NTM interact with the world. An NTM has distinct components
assigned very different functions contributing to higher-level capabilities.

The training of a NTM is really training the program that the NTM will run. The
result of training is stored in the NTM’s memory. Unlike the pure Turing Machine,
the NTM views its memory as random access. Consequently, the NTM’s mem-
ory must provide associative recall. The memory is implemented as an array with
addressing logic placed on top of it. The controller accesses the memory through
the addressing logic. It is the addressing logic that is trained, not the memory per
se, which is a flat array. Unlike a Turing Machine’s tape, which only has a sin-
gle cell accessible at any moment, the cell under the tape head, all of an NTM’s
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memory is directly connected to the controller through the addressing mechanism.
The addressing model is interposed between the controller and the memory, and it
acts as the tape head. Attentional methods4 are used to access an individual mem-
ory location by focusing on the address of the desired memory location. Read and
write operations are always the same size, but the addressing model ensures that
only the desired portion of the data has any effect.

A few ANN architectures were examined to act as the controller, but the
best-performing architecture was found to be a feed-forward ANN. Because the
FF ANN had access to the memory bank, it was able to mimic an RNN better
than an RNN could. The NTM is differentiable from end-to-end, that is, from the
addressing logic through to the complete controller. This means that an NTM
could be trained with a loss function and gradient descent. The NTM was able to
learn how to read, write, and copy strings.

A more ambitious effort followed the NTM called a differentiable neural
computer (DNC) (147). The DNC had a much improved attentional mechanism
producing more efficient memory accesses. This permits the DNC to learn how to
handle more difficult tasks, such as graph queries. The DNC was able to find the
shortest path from point A to point B (the authors used the example of a public
transport system). It is important to distinguish between memorizing the routes,
or some other formulation of the problem, and actually executing a program that
was learnt. The DNC learns the program that accepts input and carries out a task.

Research continues and there are now significant resources in the public
domain. Details for a practical implementation of a NTM were published (120).
The authors released the code with an opensource license. There is a great deal of
“secret sauce” to train an NTM, so it is an important artifact.

The NTM has led to the general class of ANNs called a Memory Augmented Neu-
ral Network (MANN) (78). Providing state for ANNs dramatically increases their
power. There are other permutations on the original design. The design of a MANN
(49) took end-to-end differentiability to the limit and includes the memory, not just
the addressing mechanism between the memory and the controller. The authors
reported that less supervision was required during training leading to quicker and
more reliable convergence. Ignoring an attention-based addressing mechanism
and placing the logic directly in the memory has also been examined (49). In this
case, the memory does not have to be densely connected to the controller.

Capturing the temporal dependencies in input data, or more generally spatial
dependencies in sequential data, has proven to be problematic for ANNs. MANNs
have the potential to address the problem by making the state explicit in the model.
RNNs are notoriously difficult to train and are very limited. Providing external and

4 These predate the use of transformers and are responsible for the terminology of queries, keys,
and values.
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programmable memory has opened the door to all kinds of new applications. This
includes reformulating problems in a new way. Providing state is arguably taking
ANNs from the stateless, functional programming paradigm of Church’s Lambda
Calculus, to the stateful world of Turing Machines and programming with side
effects. Judgment has not yet been passed on the consequences as it is still far too
early, but it is an alluring prospect.

9.6 Summary

This chapter has examined some of the theoretical limitations of what ANNs can
represent, that is, what they can learn. With some weak assumptions about the
problem, it seems they can learn almost anything. The text has presented the
canonical and fundamental algorithms for training deep learning artificial neural
networks. The basics of training models with backpropagation of error prepares
the reader for more advanced study. ANNs are from a very active research area.
Generative adversarial networks can be trained to produce novel content from
an exemplar dataset. RL and deep learning are becoming more intertwined
producing hybrid systems. Transformers are very deep ANNs with enormous
numbers of parameters. They are useful with sequential data, such as natural
language and time-series.

9.7 Projects

The following projects can be found on the book’s website: https://github.com/
nom-de-guerre/DDL_book/tree/main/Ch09.

1. The website contains a Python Notebook, SmallGAN.ipynb. The generator’s
latent space is normally distributed. Experiment with a uniform distribution
and determine which latent space is superior.

2. The tic-tac-toe example is available as a Python notebook, Tic-Tac-Toe.ipynb.
The reward functions values a draw as 0.5. Experiment with different reward
functions, such as valuing a draw as 0.0, and measure the changes to the win-
ning percentage of the agent.

3. The website includes a Python notebook, ClassifyNews.ipynb, that uses a pre-
trained language model. It is connected to a FFFC ANN. The model is a textual
classifier. Vary the ANN’s topology (both width and depth) and measure the
effect on accuracy. The notebook includes instructions for obtaining the data
and the pretrained model.

https://github.com/nom-de-guerre/DDL_book/tree/main/Ch09
https://github.com/nom-de-guerre/DDL_book/tree/main/Ch09
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Appendix A

Mathematical Review

This appendix contains a review of some of the basic mathematical concepts
required to understand the contents of this book. It is not meant to be an
exhaustive reference, nor an introduction, but simply a review of undergraduate
mathematical concepts required to understand the book.

A.1 Linear Algebra

Perhaps the most important mathematical object used in the text is the matrix from
linear algebra. The simplest matrix is a vector. A column vector is an important
special case of a matrix. The reader is referred to (49) for a full treatment. We begin
with the simplest example of a matrix, the vector.

A.1.1 Vectors

A vector is a matrix, x ∈ ℝn, with multiple rows and only one column. A vector
looks like,

x =
⎛⎜⎜⎝

x1
⋮
xn

⎞⎟⎟⎠ .
It has n rows and 1 column. A vector can be multiplied by a scaler,

𝛼 ⋅ x =
⎛⎜⎜⎝
𝛼 ⋅ x1
⋮

𝛼 ⋅ xn

⎞⎟⎟⎠ . (A.1)

Vectors of the same dimensions can be added (or subtracted) as follows:

x + y =
⎛⎜⎜⎝

x1
⋮
xn

⎞⎟⎟⎠ +
⎛⎜⎜⎝

y1
⋮
yn

⎞⎟⎟⎠ =
⎛⎜⎜⎝

x1 + y1
⋮

xn + yn

⎞⎟⎟⎠ . (A.2)

Demystifying Deep Learning: An Introduction to the Mathematics of Neural Networks,
First Edition. Douglas J. Santry.
© 2024 The Institute of Electrical and Electronics
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The transpose of a vector is created by swapping the each element’s row and
column, xT = (x1,… , xn). Thus, a transposed vector has 1 row and n columns.
The magnitude of a vector is computed with the Pythagorean theorem,

|x|2 =

√√√√ n∑
i

xi. (A.3)

A vector can be normalized such that its magnitude is 1 by dividing a vector by its
magnitude,

xnormal =
x|x|2 . (A.4)

For vectors, x, y ∈ ℝn the inner product is defined as

xT ⋅ y =
n∑

i=1
xiyi = 𝛼, (A.5)

where 𝛼 is a scaler. An inner product is a vector’s dot product. A property of the
dot product is that it is zero if the two arguments are orthogonal: xT ⋅ y = 0 ⟹ x, y
are orthogonal. It is related to the dot product with the following equation:

xT ⋅ y = |x| ⋅ |y| ⋅ cos(𝜃). (A.6)

Note that the inner product of a vector with itself is xT ⋅ x = |x|22, a vector’s magni-
tude squared.

The outer product is the opposite of the inner product. Instead of a scaler it pro-
duces a square matrix, x ⋅ yT ∈ ℝn,n, and it is defined as

x ⋅ yT =

⎛⎜⎜⎜⎜⎜⎝

x1y1 x1y2 · · · x1yn

x2y1 x2y2 · · · x2yn

⋮

xny1 xny2 · · · xnyn

⎞⎟⎟⎟⎟⎟⎠
. (A.7)

A.1.2 Matrices

The general matrix is defined as A ∈ ℝn,m

A =

⎛⎜⎜⎜⎜⎜⎝

a1,1 a1,2 · · · a1,m

a2,1 a2,2 · · · a2,m

⋮

an,1 an,2 · · · an,m

⎞⎟⎟⎟⎟⎟⎠
, (A.8)

where n is the number of rows and m is the number of columns.
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A matrix is a mapping. The Image(A) is the set of all vectors that are produced
by multiplying it with a vector. It is defined as y ∈ Image(A) ⟹ ∃x|Ax = y.

The Kernel(A) is the set of vectors that when multiplied by A result in a vector
of all zeros: x ∈ Kernel(A) ⟹ Ax = 0.

Two special matrices of note are the NULL matrix, which has zero’s in all of its
entries and defined as

𝟎 =

⎛⎜⎜⎜⎜⎜⎝

01,1 01,2 · · · 01,n

02,1 02,2 · · · 02,n

⋮

0n,1 0n,2 · · · 0n,n

⎞⎟⎟⎟⎟⎟⎠
, (A.9)

and the identity matrix, which has 1’s on the diagonal, and 0’s in all of the
off-diagonal entries,

I =

⎛⎜⎜⎜⎜⎝
11,1 01,2 · · · 01,n

02,1 12,2 · · · 02,n

⋮

0n,1 0n,2 · · · 1n,n

⎞⎟⎟⎟⎟⎠
. (A.10)

A matrix or a vector multiplied by the identity matrix is the original matrix, that
is, IA = AI = A.

For two matrices, A,B ∈ ℝn,m, then matrix addition and subtraction are defined
as

A + B =

⎛⎜⎜⎜⎜⎜⎝

a1,1 + b1,1 a1,2 + b1,2 · · · a1,m + b1,m

a2,1 + b2,1 a2,2 + b2,2 · · · a2,m + b2,m

⋮

an,1 + bn,1 an,2 + bn,2 · · · an,m + bn,m

⎞⎟⎟⎟⎟⎟⎠
. (A.11)

The number of rows and columns must be equal, that is, the matrices must have
precisely the same dimensions.

For a vector, x ∈ ℝm, and matrix, A ∈ ℝn,m, matrix-vector multiplication is
defined as

Ax =

⎛⎜⎜⎜⎜⎜⎝

∑m
i=1 a1,i ⋅ xi∑m
i=1a2,i ⋅ xi

⋮∑m
i=1an,i ⋅ xi

⎞⎟⎟⎟⎟⎟⎠
= y, (A.12)

which produces a new column vector, y ∈ ℝn. Each entry in y is the dot product
of x with a row in A.
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For matrices, A ∈ ℝn,m and B ∈ ℝm,p, the matrix product AB=C is defined when
the number of columns in A equals the number of rows in B. The product is,
C ∈ ℝn,p (the matrix vector product is not a special case, per se, p = 1).

AB =

⎛⎜⎜⎜⎜⎜⎜⎝

∑m
i=1a1,i ⋅ bi,1

∑m
i=1a1,i ⋅ bi,2 ...

∑m
i=1a1,i ⋅ bi,m∑m

i=1a2,i ⋅ bi,1
∑m

i=1a2,i ⋅ bi,2 ...
∑m

i=1a2,i ⋅ bi,m

⋮∑m
i=1an,i ⋅ bi,1

∑m
i=1an,i ⋅ bi,2 ...

∑m
i=1an,i ⋅ bi,m

⎞⎟⎟⎟⎟⎟⎟⎠
. (A.13)

Each entry in C is, ci,j = the dot product of row i in A and column j in B (hence the
columns and rows must agree in the two operands).

The transpose of a matrix,

A =

⎛⎜⎜⎜⎜⎜⎝

a1,1 a1,2 · · · a1,m

a2,1 a2,2 · · · a2,m

⋮

an,1 an,2 · · · an,m

⎞⎟⎟⎟⎟⎟⎠
, (A.14)

is, for every aT
i,j = aj,i .

AT =

⎛⎜⎜⎜⎜⎜⎝

a1,1 a2,1 · · · an,1

a1,2 a2,2 · · · an,2

⋮

a1,m a2,m · · · am,n

⎞⎟⎟⎟⎟⎟⎠
. (A.15)

A concrete example is

⎛⎜⎜⎜⎝
1 2
3 4
5 6

⎞⎟⎟⎟⎠
T

=
(

1 3 5
2 4 6

)
. (A.16)

The transpose affects matrix multiplication as follows: (AB)T = BTAT .

A.1.3 Matrix Properties

Consider a linear system of simultaneous equations, Ax = b. This is the problem
of finding x, which is unknown. The system can be solved by finding the inverse
of the matrix, A and it is written, A−1. The inverse of a matrix is a matrix such
that, A−1A = I. It can be used to find the solution to a linear system: Ax = b ⟹
x = A−1b.
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A.1.4 Linear Independence

Matrix-vector multiplication can be interpreted as follows:

Ax =
⎛⎜⎜⎝
a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

⎞⎟⎟⎠
⎛⎜⎜⎝
x1
x2
x3

⎞⎟⎟⎠
= x1 ⋅

⎛⎜⎜⎝
a1,1
a2,1
a3,1

⎞⎟⎟⎠ + x2 ⋅
⎛⎜⎜⎝
a1,2
a2,2
a3,2

⎞⎟⎟⎠ + x3 ⋅
⎛⎜⎜⎝
a1,3
a2,3
a3,3

⎞⎟⎟⎠ . (A.17)

It is a linear combination of the column vectors of the matrix, A. If none of the
column vectors can be written as a nontrivial (all xi ≠ 0) linear combination of the
others, then the column vectors are said to be linearly independent.

The dimension of a matrix is different from its rank. The rank is the span of
the matrix’s image. It is the number of linearly independent column vectors. For a
matrix, A ∈ ℝn,m, if all m of the column vectors are linearly independent, then the
matrix is full rank, and Rank(A) = m. A matrix that is not full rank is called rank
deficient.

A.1.5 The QR Decomposition

Any matrix can be decomposed as A = QR, where Q is orthonormal and spans A.
This is the QR decomposition of a matrix. Orthonormal means that every column
vector in Q has a magnitude of 1 and is orthogonal with all of the other column
vectors. Thus, Q has the useful property that QTQ = I. R is upper triangular. It
has many uses, including solving dense linear systems. In practice, linear systems
are never solved by inverting A. Ax = b = QRx ⟹ Rx = QTb. As R is upper
triangular solving for x is trivially performed with backward substitution.

The QR decomposition of a matrix can be computed cheaply and with good
numerical stability with either householder reflectors or givens transformations.
See (109) for details.

A.1.6 Least Squares

Consider the problem of analyzing data. Given a set of m unknown parameters
or features, and the results of n experiments, the data can be stored in a matrix,
A ∈ ℝn,m. If we wish to explain the data with respect to some vector y, such that
Ax = y, then usually n ≫ m. The problem is that y ∉ Image(A) so Ax ≠ y for all x.
The problem then is to find an x̂ such that |Ax̂ − y|2 is a minimum. Pythagoras tells
us that the minimum is to be found when the residual vector is orthogonal to all
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the column vectors of A. Multiplying with AT computes the dot products with all
of A’s column vectors. This leads to the normal equations. The normal equations
are

AT(Ax̂ − y) = 0 ⟹ ATAx̂ = ATy. (A.18)

The normal equations must be equal zero as the residual vector must be at a right
angle to the image of A. The QR decomposition yields the least squares solution,
Rx̂ = Q−1y. See (145) for more details.

A.1.7 Eigenvalues and Eigenvectors

A special matrix equation is of the form, Au = 𝜆u. 𝜆 is a scaler known as an
eigenvalue, and u is an eigenvector. Eigenvalues can computed with the Francis
Algorithm, and their attendant eigenvectors with inverse iteration. Of special
note is the eigenvector associated with the largest eigenvalue. The pair can be
obtained with the Power Method. It is an iteration of the form,1

xi+1 =
Axi|Axi| . (A.19)

As i → ∞ the denominator approaches the largest eigenvalue and the left-hand
side approaches its eigenvector. This is important as this is what occurs in expres-
sions of the form, Anx. The higher the degree the closer to the power method will
be the result; this is asymptotically important.

A.1.8 Hadamard Operations

The Hadamard matrix product is an element wise operation. For two matrices,
A,B ∈ ℝn,m, it is defined when they have the same number of rows and columns.
The operation is defined as

A ⊗ B =

⎛⎜⎜⎜⎜⎝
a1,1 ⋅ b1,1 a1,2 ⋅ b1,2 ... a1,m ⋅ b1,m
a2,i ⋅ b2,1 a2,2 ⋅ bi,2 ... a2,m ⋅ b2,m

⋮
an,1 ⋅ bn,1 an,2 ⋅ bn,2 ... an,m ⋅ bn,m

⎞⎟⎟⎟⎟⎠
. (A.20)

A scaler function, f , when given a vector as an argument is applied per element to
the vector:

f (x) =
⎛⎜⎜⎝

f (x1)
⋮

f (xn)

⎞⎟⎟⎠ . (A.21)

1 This is the basis of Google’s Page Rank algorithm (88).
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A.2 Basic Calculus

In the following expression, y = f (x) = ex, there are some important and distinct
elements. f is a function of x. y is the value of the function, f . x is a member of the
domain of f , and y is a member of the range of f . A function is a mapping from a
range to a domain. In this instance, it is written as f ∶ ℝ → ℝ.

Functions are a special case of relations. Relations are also mappings, but the
mapping can have multiple values. Functions may only have a single value. y = x2

is a function; it only takes on one value. y =
√

x is a relation; the mapping produces
two values.2 For example,

√
4 = ±2.

The Calculus is the basis of training neural networks. Some of the more impor-
tant results are presented here. A thorough treatment can be found in (88). The
classical definition of a derivative for a scaler function is

df
dx

= lim
h→0

f (x + h) − f (x)
h

. (A.22)

An important derivative is that for ex, where e is the natural number,

e = lim
n→∞

(
1 + 1

n

)n
≃ 2.7182818284590452353..., (A.23)

a transcendental number.
The derivative of ex from the classical definition is

d
dx

(
ex) = lim

h→0

ex+h − ex

h

= lim
h→0

exeh − ex

h

= lim
h→0

ex(eh − 1)
h

= ex ⋅ lim
h→0

eh − 1
h

= ex. (A.24)

Calculus is important because nonlinear functions can be optimized with it. A
function will have a stationary point at its extrema. The derivative will be zero
at either a local minimum or a local maximum. By differentiating an equation,
setting the result equal to zero and solving, the function is optimized.

A.2.1 The Product Rule

For more involved functions differentiating is possible with two rules of macro
differentiation. The Product Rule: if a function can be written as f (x) = g(x) ⋅ h(x),

2 Do not confuse the difference between a scaler and a vector with multiple values.
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then the derivative can computed as

f ′(x) = g′ ⋅ h + g ⋅ h′. (A.25)

Example: f (x) = sin(x) ⋅ x2 ⟹ f ′(x) = cos(x) ⋅ x2 + sin(x) ⋅ 2x.

A.2.2 The Chain Rule

The Chain Rule: If a function can be written as a composition, f (x) = f (u(x)),
then its derivative can be computed as

df
dx

=
df
du

⋅
du
dx
. (A.26)

Example: f (x) = sin(x2), let u = x2, then f (x) = sin(u) ⟹ f ′(x) = cos(x2) ⋅ 2x.

A.2.3 Multivariable Functions

For scaler multivariable functions such as z = f (x, y) = x2 + xy + y3 differentiation
must account for the variable of interest. Such functions are differentiated with
partial derivatives. To understand how z is changing with respect to x, we consider
all of the other variables as constants. So,

𝜕z
𝜕x

= 2x + y, (A.27)

and
𝜕z
𝜕y

= x + 3y2. (A.28)

The gradient of a function is a vector function of how the scaler function is chang-
ing. It is defined as

∇z =
⎛⎜⎜⎝
𝜕z
𝜕x
𝜕z
𝜕y

⎞⎟⎟⎠ =
(

2x + y
x + 3y2

)
. (A.29)

Note that the gradient of a scaler function is a vector function. The analog of the
chain rule for partial derivatives is

𝜕f
𝜕x

=
𝜕f
𝜕u

⋅
𝜕u
𝜕x

A.2.4 Taylor Series

An important tool for approximating functions is a Taylor series. For a full
treatment, the interested reader is directed to (126). A Taylor series is useful for
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approximating a function where an analytic expression is not available. They are
often used for analyzing and comparing functions. The general form is

f (x + Δx) = f (x) +
∞∑

i=1

diy
dxi ⋅

Δxi

i!
. (A.30)

They are often truncated to a finite expression and an error term,

f (x + Δx) = f (x) +
n∑

i=1

diy
dxi ⋅

Δxi

i!
+ O(Δn+1). (A.31)

More usually the terms of interest in the finite form are expanded,

f (x + Δx) = f (x) +
dy
dx

⋅ Δx +
d2y
dx2 ⋅

Δx2

2!
+ O(n3). (A.32)

An important Taylor series is the series for the exponential function,

ex = 1 + x + x2

2!
+ · · · (A.33)

For x expressed in radians the two most common trigonometric functions and their
Taylor series functions are

cos(x) = 1 − x2

2!
+ x4

4!
− x6

6!
+ · · · (A.34)

sin(x) = x − x3

3!
+ x5

5!
− x7

7!
+ · · · (A.35)

A.3 Advanced Matrices

For a vector function, f, with domain and range ℝN → ℝM , has a Jacobean that is
an M × N matrix defined as

J =
⎛⎜⎜⎝
∇Tf1
⋮

∇TfM

⎞⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝜕f1
𝜕x1

𝜕f1
𝜕x2

· · · 𝜕f1
𝜕xN

𝜕f2
𝜕x1

𝜕f2
𝜕x2

· · · 𝜕f2
𝜕xN

⋮
𝜕fM
𝜕x1

𝜕fM
𝜕x2

· · · 𝜕fM
𝜕xN

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (A.36)

The Jacobean of a vector function can be interpreted as how the function is chang-
ing with respect to all of its arguments. A detailed exposition can be found in (88).

A.4 Probability

Probability is a mathematical means of attaching a quantitative chance of an
event occurring during an experiment. The universe of possible events is called
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the sample space, Ω. An outcome of an experiment is an observation, 𝜔 ∈ Ω. The
probability of a particular outcome, 𝜔 is P(X = 𝜔), where X is a random variable.
Conversely, the probability of not observing 𝜔 is 1 − P(X = 𝜔). A probability has
the following properties:

0 ≤ P(𝜔) ≤ 1.0, (A.37)

and

P(Ω) = 1.0. (A.38)

For events, A,B ⊂ Ω, the events are said to independent if

P(AB) = P(A)P(B). (A.39)

For independent and disjoint events, A,B, the probability of A given that B has
occurred is

P(A|B) = P(AB)
P(B)

. (A.40)

Related is the famous Bayes theorem,

P(A|B) = P(B ∣ A)P(A)
P(B)

. (A.41)

The expectation for a random variable X distributed discretely is computed with,

𝔼(X) =
∑

P(x)x. (A.42)

For a random a random variable distributed continuously, we use,

𝔼(X) =

+∞

∫
−∞

xf (x)dx. (A.43)

For further reading see (126).
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Glossary

The following is a glossary of terms and acronyms used in the book. The list is
not exhaustive. Many terms and acronyms are overloaded in the literature and in
practice so the definitions should not be considered authoritative. The terms can
have multiple senses.

Activation Function A function in the layer of a neural network to
produce the final output. The role is usually to
introduce nonlinearity into the computation.
Without an activation function a neural network will
convolve to a linear mapping. The activation
function is typically applied to each artificial neuron
individually.

Algorithm A sequence of unambiguous steps to compute a
result or accomplish a task. The steps must be
unambiguous and in the case of multiple steps, be
they recursive or iterative, it must terminate.

ANN Artificial neural network is a mathematical model of
neural assemblies. It is typically modeled as a graph
with weighted edges. The vertices are neurons.

Back-Propagation of Error A supervised training technique used to produce
trained ANN models. Starting with a differentiable
loss function learnable parameters are updated by
relating the error with the Calculus’ chain rule.

Batch A subset from the training set that is presented to an
ANN during training. The examples in the batch are
pushed through the ANN, and backpropagation of
error is used to compute the error of the learnable
parameters. The learnable parameters in the model

Demystifying Deep Learning: An Introduction to the Mathematics of Neural Networks,
First Edition. Douglas J. Santry.
© 2024 The Institute of Electrical and Electronics
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are updated following the processing of the elements
in the batch.

Bias A fundamental mistake made in model selection. For
example, modeling a phenomenon with a parametric
distribution that is uniformly distributed with a
binomial distribution. The binomial parameter will
never be correctly estimated as the underlying
process is different from that assumed. It is defined
as y − ŷ, the ground truth minus the inferred
quantity.

Bias-Variance Trade-off A theory of fundamental limitations of training
machine learning models. It argues that decreasing
the bias of a trained model simultaneously increases
the variance. One must trade-off one or the other to
find the lowest error in the search for the best results
of a model.

Category An element in a set of classes (see class).
Class A specific type in a set of types. For example, the set

{ dog, cat, giraffe } contains 3 types, or classes.
Classification The classification problem is that of accepting an

input and assigning it to one of set of classes.
CNN (1) Classifying Neural Network, a neural network

trained to classify input into a finite one of a
finite set.

CNN (2) Convolutional Neural Network, a neural network
that includes convolutional layers. A convolutional
layer accepts a matrix and reduces the dimensions of
the matrix by applying a filter. The filter contains
learnable parameters.

Column A dataset can be viewed as a table of columns and
rows. The table represents a set of disjoint
observations, or outcomes of experiments. The
columns represent the quantities that were
measured. For example, perhaps the temperature at
a particular location is measured every morning for a
year. This would yield a table of 365 rows and one
column; the column would contain the measured
temperature.

Confusion Matrix A matrix used to understand the quality of a
classification model. The rows and columns are both
labeled with the categories from the set of possible
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classes, but the rows represent the prediction from
the model and column the ground truth. Entries are
created by performing inference with a model and a
datum. The row predicted by the model and the
column dictated by the ground truth is incremented
by 1. It can be used to derive further accuracy
metrics or interpreted on its own.

Covariate In the context of machine learning, the covariate is
the response in the dataset. See response.

Convex Set A set where any two points in the set define a line
segment that is also in the set.

Convex A convex function with a range that is a convex set.
Convolution A form of regularizing an ANN layer’s input. It

applied a kernel to produce an output map. Two
common kernels are the Frobenius Product and
MaxPooling.

Cross Entropy A loss function for use with categorical problems.
Data Set A collection of data. It can be viewed as describing a

generating process. It consists of a number of
columns, each of which represents a feature, and a
number of rows each of which represents a sample.

Decision Boundary Given a set S =
⋃K

k Sk, where each subset represents
a complete set of examples for category, k, and Sk
consists of tuples, x ∈ ℝd, then the boundary
between the subsets in the input space, ℝd, is the
decision boundary. The object of training a classifier
is to compute the decision boundary; the resultant
model is usually an approximation.

Dense A type of layer in an ANN. Every element in a dense
layer is connected to every output in the shallower
layer.

Deep Learning An ANN with at least 1 hidden layer.
Edge The connection between nodes in a graph.
Epoch Training an artificial neural network is usually done

with a machine learning algorithm. Each step
through the algorithm is an epoch. A step includes
going through the training data and updating the
model. An epoch can either be measured as a step or
a complete run though the dataset if multiple steps
are required.

Feature A synonym for column (see column).
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Feed-Forward An ANN graph that does not contain a cycle (in
graph theory, a tree). All neuron results are
propagated forward without ever being used in an
earlier neuron.

FFFC Feed-forward and fully connected. See entries for
both.

Fully-Connected See dense.
GAN Generative Adversarial Network; a system consisting

of two ANNs. One ANN learns the dataset to
differentiate between fakes and real examples. The
other ANN tries to imitate the training set. The two
ANNs compete with each other, the generative ANN
attempting to fool the discriminator ANN. The result
is a generative ANN that produces novel output.

Generalization During training, a machine learning model learns
the training set. Generalization is the measure of
how a trained machine learning model performs
with respect to unseen data.

Gradient The vector derivative of a multivariable function. See
Appendix A.

Gradient Descent Optimizing high-dimensional convex equations can
be done by computing its gradient and moving in an
appropriate direction (decreasing for minimization
problems and increasing for maximization
problems).

Graph A mathematical construct consisting of a set of
nodes, sometime also referred to as vertices and
edges. The edges connect the vertices; graphs are
used to represent relationships. A graph is written as
G (V, E). Respecting ANNs nodes are neurons and
edges are connections between neurons. See
Appendix A.

Ground Truth Supervised learning problems require data. The
dataset consists of the input to a model, predictors,
and the correct response for each tuple of predictors.
The correct answer is known as the ground truth.

Label Datasets used for training classifying ANNs with
supervised learning training techniques include the
“answer,” the ground truth. For classification, the
answer is known as a label.
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Learnable Parameter A machine learning model contains parameters that
need to be trained with respect to a training set.
A learnable parameter is any quantity in the model
that is improved during training.

Learning See the entry for machine learning.
Likelihood Likelihood is not a synonym for probability.

Probabilities make predictions. Likelihood explains
observed data. It is often used to compute the
parameters required to calculate probabilities.

Logits The raw output from a classifying ANN. Logits can
be passed on to a terminal layer in the form of
Softmax to produce the final prediction.

Loss Function Supervised training techniques use a loss function to
regulate learning. Supervised training techniques
require an empirical measure of “wrong.” A loss
function accepts the output of an ANN and the
ground truth; the difference between the two is
quantified and used for the seed of backpropagation.
They typically must be differentiable.

LSTM Long Short Term Memory, an ANN that is an
example of the RNN.

Machine Learning Machine learning is a technique to realize artificial
intelligence in a digital computer. An algorithm can
be considered to be a machine learning technique if,
using Tom Mitchell’s definition, “a computer
program is said to learn from experience, E, with
respect to some class of tasks, T, and performance
measure, P, if its performance at tasks in T, as
measured by P, improves with experience E.” Put
another way, a computer programmed with an
algorithm that is capable improving empirically
measured performance with increased exposure.

Matrix A mathematical object whose names derives from
the Latin mater (they were originally conceived as
the “mother” of determinants). It is a rectangular
array whose elements can be anything but are
typically real numbers or complex numbers. It has
well-defined operations including addition,
subtraction, and multiplication.

MLE See cross entropy
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Model In the context of machine learning, a model is an
object that attempts to mimic a phenomenon.
A model makes predictions.

MSE Mean Squared Error, a loss function for use with
regression. It is defined as

∑
.

Multiclass The classification problem formulated for mutually
exclusive categories.

Multilabel The classification problem formulated for
independent membership in the set of categories.
An example can simultaneously be classified in more
than one category, and membership in categories is
independent.

Neuron The specialized cell that forms animal brains.
Neurons are connected to other neurons with a
neural synapse. Artificial neural networks model
biological neural assemblies with graphs and trained
weights.

Node The abstraction that encapsulates a neuron in an
ANN graph. See graph.

Normalization In the context of machine learning, normalization
refers to the process of transforming data to produce
data preserving relationships that are more
consistent with respect to scale.

Optimization Given an objective function, that is, a function to
make “best,” find the minimum or the maximum.
Optimizing an ANN by minimizing its loss function
is how learning is effected.

Parameter A static quantity required by a function (or model)
that determines its behavior. For example, the
probability of success is a parameter of a binomial
distribution. Parameters are treated as variables
during training as they can change as an optimal
value for them is computed. They are fixed when
used for inference.

Perceptron The most common type of artificial neuron. Its state
is computed by a dot product of its weights with its
inputs. The resulting scaler then has an activation
function applied to produce the final result.

Predictor A synonym for column. See column.
Preprocessing (Data) The act of normalizing input data. See the entry for

normalization.



�

� �

�

Glossary 227

Probability Probability is a quantitative means of expressing
uncertainty. It is a quantity that makes predictions.
Any function, f , that has the following properties can
be construed as a probability: 0 ≤ p(x) ≤ 1.0, and for
discrete p(x) (mass function),

∑∀xp(x) = 1, and for
continuous p(x) (density function), ∫ ∞

−∞ p(x)dx = 1.
Regression The act of building a model to explain observed data.

The model explains the relationship between
continuous dependent variables.

Regularization In the context of machine learning, it is a method to
reduce the generalization error of trained model.

Residual Connection An arrangement of an ANN’s layers such that a layer
transmits its signal to the immediately deeper layer
as well as the following layer. For layers A, B, and C,
B accepts A’s signal. C accepts both B’s and A’s
signals; the residual connection.

Response The response is the value computed by an ANN.
Consider, y = ANN(x), y is the response. For
supervised learning, the correct response must be
included with the training set.

RNN Recurrent Neural Network, a neural network whose
graph contains cycles. They are trained with
backpropagation through time to account for the
cycles.

Sigmoid A real valued function that maps its input between 0
and 1. It is used as an activation function (see
activation function).

Signal A signal can either be the output of an artificial
neuron, a layer, or the ANN.

Softmax A vector valued function used to rationalize related
outputs as mutually exclusive probabilities. Consider
a set of categories, 𝕂, and cardinality K = |𝕂|.
A tuple, z, can be converted to a discrete synthetic
probability distribution with,

p̂j = Softmax(z) = ezj∑K
k ezk

.

Stochastic Randomly determined. A stochastic process evolves
randomly. When modeling or simulating stochastic
processes pseudo-random number generators are
typically used.
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Supervised Learning A technique of training machine learning models.
Supervised learning requires the answer to be
present in the training set. Learning results from
relating a model’s computed answer to the answer.

SGD Stochastic Gradient Descent, a means of selecting
subsets from the training set to produce
mini-batches. It can be construed as sampling the
error gradient of a model with respect to a loss
function.

Test Set A subset of a dataset reserved to measure
generalization. A dataset can be divided into a
training set and a test set. The training set is used to
train the model. The test is used kept in reserve and
only used to test the accuracy of the trained model.
The performance of the training model with the test
is used as a proxy for a model’s generalization error.

Training The act of producing a model that learns a training
set. See model and learning.

Training Set The data used to train a model.
Verification Set The data used to verify a model during training. It is

a disjoint subset of the dataset and can be interpreted
as the generalization error of the model.

Weight A directed edge between two neurons is a connection
between the two neurons. A weight is used to scale
the signal emanating from the source neuron.
Training neural networks is the process of finding
good weights so the network can make good
predictions.
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